

RE: 23-0202-A1 - GAINEY RESIDENCE MiTek USA, Inc. Site Information: Customer Info: OWNER BUILDER Project Name: GAINEY RESIDENCE Model: NA Lot/Block: NA Subdivision: NA Address: 3529 COUNTY ROAD 138, -City: FT WHITE State: FL Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

Addres City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Wind Code: ASCE 7-16 Roof Load: 37.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 135 mph Floor Load: N/A psf

This package includes 8 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1	T30302910	T-1	4/13/23
2	T30302911	T-2	4/13/23
3	T30302912	T-3	4/13/23
4	T30302913	T-4	4/13/23
5	T30302914	T-5	4/13/23
6	T30302915	FG-1	4/13/23
7	T30302916	C-2	4/13/23
8	T30302917	C-1	4/13/23

This item has been electronically signed and sealed by Velez, Joaquin, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Arnold Truss Mfg. LLC.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

April 13,2023

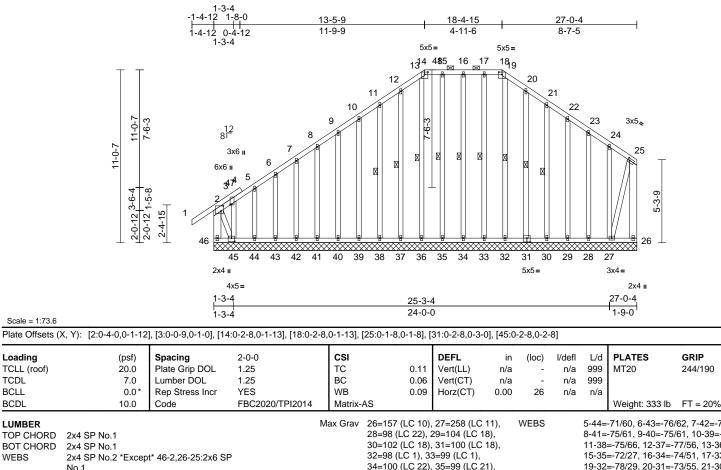
Velez, Joaquin

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T30302910

Scale = 1:73.6

Loading

TCDL


BCLL

BCDL

TCLL (roof)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:26 ID:TaytS7Zy2X7c8W2BZQ6aZbzVQU4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 *Except* 46-2,26-25:2x6 SP No.1 2x4 SP No.2		Max Grav 26=157 (LC 10), 27=258 (LC 11), 28=98 (LC 22), 29=104 (LC 18), 30=102 (LC 18), 31=100 (LC 18), 32=98 (LC 1), 33=99 (LC 1), 34=100 (LC 22), 35=99 (LC 21), 36=109 (LC 17), 37=104 (LC 17),	8-41=-7 11-38=- 15-35=- 19-32=- 22-29=-	1/60, 6-43=-76/62, 7-42=-75/61, 5/61, 9-40=-75/61, 10-39=-75/61, 75/66, 12-37=-77/56, 13-36=-83/35, -72/27, 16-34=-74/51, 17-33=-72/32, -78/29, 20-31=-73/55, 21-30=-77/67, -75/61, 23-28=-78/65, 24-27=-84/87,
BRACING			38=101 (LC 17), 39=102 (LC 17),		58/24, 2-45=-332/428, 25-27=-173/131
TOP CHORD	Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-18.		40=102 (LC 17), 41=102 (LC 17), 42=101 (LC 17), 43=104 (LC 17), 44=96 (LC 21), 45=372 (LC 10),	this design.	e loads have been considered for
BOT CHORD WEBS	Rigid ceiling directly applied. 1 Row at midpt 15-35, 16-34, 17-33, 19-32, 20-31, 21-30	FORCES	46=483 (LC 11) (lb) - Maximum Compression/Maximum Tension 2-46=-445/321, 1-2=0/43, 2-3=-205/155,	Vasd=105mph; TCD B=45ft; L=27ft; eave	/ult=135mph (3-second gust) DL=4.2psf; BCDL=6.0psf; h=25ft; ∋=2ft; Cat. II; Exp B; Enclosed; I) and C-C Corner(3E) -1-4-12 to
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		$\begin{array}{l} 3-5=-195/157, 5-6=-191/146, 6-7=-180/134,\\ 7-8=-168/122, 8-9=-157/129, 9-10=-146/169,\\ 10-11=-144/208, 11-12=-169/251,\\ 12-13=-189/287, 13-14=-157/234,\\ 14-15=-167/260, 15-16=-167/260,\\ 16-17=-167/260, 15-16=-167/260,\\ 25-26=-132/113, 18-19=-157/234,\\ 19-20=-189/286, 20-21=-169/251,\\ 21-22=-144/208, 22-3=-121/168,\\ \end{array}$	1-7-4, Exterior(2N) 1 16-5-9, Exterior(2N) 18-4-15 to 21-3-4, E cantilever left and rig right exposed;C-C fo	1-7-4 to 13-5-9, Corner(3R) 13-5-9 to 16-5-9 to 18-4-15, Corner(3R) Exterior(2N) 21-3-4 to 26-9-8 zone; ght exposed ; end vertical left and or members and forces & MWFRS ; Lumber DOL=1.60 plate grip
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	BOT CHORD	23-24=-96/126, 24-25=-84/97 45-46=-290/209, 44-45=-120/127, 43-44=-120/127, 42-43=-120/127, 41-42=-120/127, 40-41=-120/127, 39-40=-120/127, 36-37=-120/127, 35-36=-120/127, 36-37=-120/127, 35-36=-120/127, 32-33=-120/127, 33-34=-120/127, 32-33=-120/127, 30-32=-121/127, 29-30=-121/127, 28-29=-121/127, 27-28=-121/127, 26-27=-76/90	e s u F c s	This item has been electronically signed and sealed by Velez, Joaquin, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified

on any electronic copies. Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

GRIP

April 13,2023

Date:

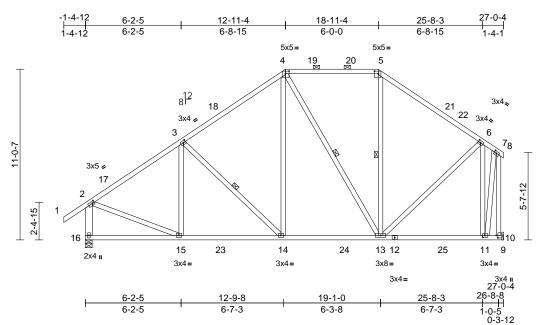
Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-747 ev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T30302910

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 26, 340 lb uplift at joint 46, 28 lb uplift at joint 44, 35 lb uplift at joint 43, 32 lb uplift at joint 42, 33 lb uplift at joint 41, 33 lb uplift at joint 40, 33 lb uplift at joint 39, 37 lb uplift at joint 38, 26 lb uplift at joint 37, 8 lb uplift at joint 38, 11 lb uplift at joint 35, 28 lb uplift at joint 34, 17 lb uplift at joint 39, 26 lb uplift at joint 31, 37 lb uplift at joint 30, 36 lb uplift at joint 29, 27 lb uplift at joint 28, 139 lb uplift at joint 27 and 346 lb uplift at joint 45.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:26 ID:TaytS7Zy2X7c8W2BZQ6aZbzVQU4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-2	Piggyback Base	2	1	Job Reference (optional)	T30302911

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:27 ID:QV7U0R_XZbfVT2o6g_I00BzVQTW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.52	Vert(LL)	-0.06	13-14	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.34	Vert(CT)	-0.10	11-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.02	10	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS		Wind(LL)	0.02	14-15	>999	240	Weight: 212 lb	FT = 20%

BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2 *Except* 16-2:2x6 SP No.1
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purlins
	(6-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 3-14, 4-13, 5-13
REACTIONS	(size) 10= Mechanical, 16=0-5-4
	Max Horiz 16=-222 (LC 10)
	Max Uplift 10=-167 (LC 12), 16=-188 (LC 12)
	Max Grav 10=1156 (LC 19), 16=1227 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/49, 2-3=-1161/181, 3-4=-974/226,
	4-5=-607/215, 5-6=-809/194, 6-7=-208/7,
	7-8=0/9, 2-16=-1132/220, 7-10=-1183/115
BOT CHORD	15-16=-165/229, 14-15=-174/1009,
	13-14=-76/791, 11-13=-38/217, 10-11=-2/16,
	9-10=0/0
WEBS	3-15=-138/89, 3-14=-290/145, 4-14=-23/473,
WEBS	3-15=-138/89, 3-14=-290/145, 4-14=-23/473, 4-13=-328/66, 5-13=-66/198, 6-13=-35/584,
WEBS	3-15=-138/89, 3-14=-290/145, 4-14=-23/473, 4-13=-328/66, 5-13=-66/198, 6-13=-35/584, 6-11=-925/290, 7-11=-186/1149,
WEBS	3-15=-138/89, 3-14=-290/145, 4-14=-23/473, 4-13=-328/66, 5-13=-66/198, 6-13=-35/584,

NOTES

1) Unbalanced roof live loads have been considered for this design.

B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 13-0-0, Exterior (2R) 13-0-0 to 17-2-15, Interior (1) 17-2-15 to 19-0-0, Exterior(2R) 19-0-0 to 23-2-15, Interior (1) 23-2-15 to 27-1-0 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4)
- Provide adequate drainage to prevent water ponding.
- All plates are 3x4 MT20 unless otherwise indicated. 5) 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint 16 and 167 lb uplift at joint 10.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

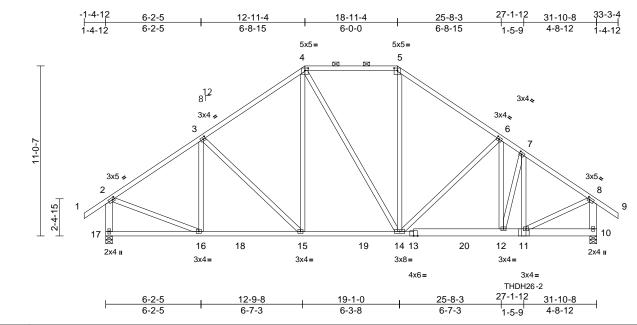
LOAD CASE(S) Standard

This item has been electronically signed and sealed by Velez, Joaquin, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

April 13,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	Т-3	Piggyback Base Girder	1	2	Job Reference (optional)	T30302912

Scale = 1:74.8

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:28 ID:sWYSImtOqWJMA0j5pIYcL4zVQR4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

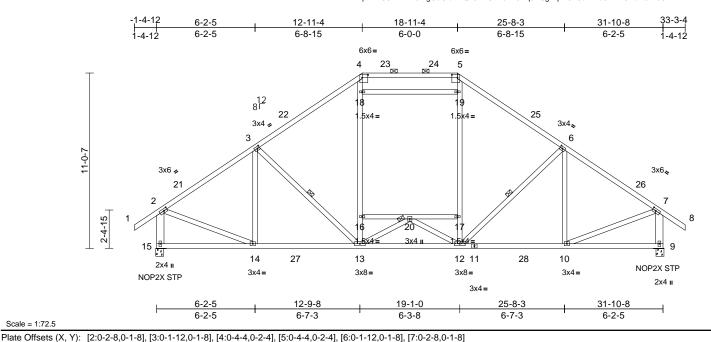
Plate Offsets (X, Y): [[2:0-1-8,0-1-8], [3:0-1-12,0-1-8], [4:0-2-8,0-1-13], [5:0-2-8,0-1-13], [6:0-1-12,0-1-8], [7:0-1-12,0-1-8], [8:0-1-8,0-1-8]

												-			
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.18	Vert(LL)	-0.04	14-15	>999	360	MT20	244/190		
TCDL	7.0	Lumber DOL	1.25		BC	0.23	Vert(CT)	-0.07	14-15	>999	240				
BCLL	0.0*	Rep Stress Incr	NO		WB	0.24	Horz(CT)	0.02	10	n/a	n/a				
BCDL	10.0	Code	FBC2)20/TPI2014	Matrix-MS		Wind(LL)	0.02	14-15	>999	240	Weight: 500 lb	FT = 20%		
LUMBER			:		considered equal			245				2-4=-54, 4-5=-54	l, 5-8=-54, 8-9=-54,		
TOP CHORD	2x4 SP No.1				ed as front (F) or I ction. Ply to ply co				0	10-17=- oncentra		ada (lh)			
BOT CHORD		ot* 13-10:2x6 SP No.			distribute only load					Vert: 11		()			
WEBS	2x4 SP No.2 "Exce	ot* 17-2,10-8:2x6 SP	NO.1		wise indicated.	is noted	as (i) oi (b),			ven. m	=-950	(F)			
BRACING	o		. :		roof live loads ha	ve been	considered fo	or							
TOP CHORD		eathing directly applie	50 UI	this design.		to boom									
		cept end verticals, a	na		7-16; Vult=135m	ph (3-seo	cond aust)								
BOT CHORD	2-0-0 oc purlins (6-0	,	~		oh; TCDL=4.2psf;										
BOICHORD	bracing.	/ applied or 10-0-0 or	C	B=45ft; L=32	2ft; eave=4ft; Cat.	II; Exp B	; Enclosed;								
REACTIONS		, 17=0-5-4			ectional); cantilev										
	Max Horiz 17=-292			plate grip DC	eft and right expo	sea; Lun	nber DOL=1.0	60							
	Max Uplift 10=-499	(LC 8), 17=-276 (LC	8)		igner / Project en	ainoor ro	sponsible for								
	Max Grav 10=2384	(LC 14), 17=1591 (L	.C 13)		lied roof live load										
FORCES	(lb) - Maximum Con	npression/Maximum			s specific to the us										
	Tension				quate drainage to										
TOP CHORD		0/282, 3-4=-1490/35	1, 1	 This truss has 	s been designed	for a 10.	0 psf bottom	•							
	4-5=-1260/369, 5-6				ad nonconcurrent										
		=-2265/487, 8-9=0/4	9, 1		has been designe			0psf							
	2-17=-1498/306, 8-				n chord in all area										
BOT CHORD	16-17=-259/295, 15 14-15=-57/1268, 12				by 2-00-00 wide w										
	11-12=-239/1818, 1				ny other members hanical connectio										
WEBS	3-16=-255/115, 3-1		:	,	e capable of withs		,					This item ha	is been		
		=-111/282, 5-14=-69	/587.		499 lb uplift at joir			L				electronicall	y signed and		
	6-14=-777/282, 6-1	,	,		Irlin representation		ot depict the	size							
	2-16=-97/1271, 7-12	2=-263/159,			ation of the purlin			0.20					elez, Joaquin, PE		
	7-11=-178/332, 8-1	1=-289/1920		bottom chore		5							tal Signature.		
NOTES				1) Use MiTek T	HDH26-2 (With 2	2-16d na	ils into Girde	r &				Printed copi	es of this		
1) 2-ply truss	to be connected toge	ther with 10d			nto Truss) or equi			n the				document a	re not considered		
(0.131"x3") nails as follows:				onnect truss(es) to	front fac	ce of bottom					signed and	sealed and the		
	s connected as follow			chord.								0	ust be verified		
	rows staggered at 0-			12) Fill all nail holes where hanger is in contact with lumber.								0			
	Bottom chords connected as follows: 2x4 - 1 row at				LOAD CASE(S) Standard						on any electronic copies.				
	2x6 - 2 rows staggered ected as follows: 2x4			I) Dead + Ro Plate Increa	of Live (balanced) ase=1.25	: Lumbei	Increase=1.	25,				Joaquin Velez PE N MiTek Inc. DBA Mi 16023 Swingley Ridg	Tek USA FL Cert 6634		

Chesterfield, MO 63017 April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Uniform Loads (lb/ft)



Date:

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-4	Attic	21	1	T303 Job Reference (optional)	302913

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:28 ID:w7lpFEFS8X4Mn4sWgOuGlbzVQB6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	1											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.31	Vert(LL)	-0.23	13-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.43	Vert(CT)	-0.28	13-14	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.38	Horz(CT)	0.03	9	n/a	n/a		

Matrix-AS

BCDL	10.0	Code	FBC2020)/TPI2014
LUMBER	· · · ·		2)	Wind: AS
TOP CHORD	2x4 SP No.1		,	Vasd=10
BOT CHORD	2x4 SP No.1			B=45ft; L:
WEBS	2x4 SP No.2 *Except	t* 15-2,9-7:2x6 SP No	.1	MWFRS
BRACING				1-10-6, In
TOP CHORD	Structural wood shea	athing directly applied		to 17-6-5,
		and 2-0-0 oc purlins	,	19-0-0 to
	(6-0-0 max.): 4-5.			cantilever
BOT CHORD	Rigid ceiling directly	applied.		right expo
WEBS	1 Row at midpt	3-13, 6-12		for reaction DOL=1.60
JOINTS	1 Brace at Jt(s): 20		3)	Building [
REACTIONS	(size) 9=0-6-0, 1	5=0-6-0	3)	verifying a
	Max Horiz 15=293 (L	.C 11)		requireme
	Max Uplift 9=-231 (LO	C 12), 15=-231 (LC 12	²⁾ 4)	Provide a
	Max Grav 9=1503 (L	.C 19), 15=1503 (LC 1	8) 5)	All plates
FORCES	(lb) - Maximum Com	pression/Maximum	6)	This truss
	Tension		,	chord live
TOP CHORD	1-2=0/54, 2-3=-1465	/231, 3-4=-1301/287,	7)	* This true
	4-5=-941/287, 5-6=-2			on the bo
	,	0/54, 2-15=-1414/263	,	3-06-00 ta
	7-9=-1414/263			chord and
BOT CHORD		,	8)	Provide m
		12=-56/1143, 9-10=-9	/88	bearing p
WEBS	3-14=-231/108, 3-13 13-16=-14/353, 16-1		•	joint 9 and
	4-18=-14/360, 12-17		9)	This truss
	17-19=-14/356, 5-19			structural chord and
	6-12=-287/132, 6-10	,		the bottor
	2-14=-52/1135, 7-10		10)	Graphical
	,	=-66/74, 18-19=-59/4,		or the orie
	13-20=-77/86, 12-20			bottom ch
NOTES			11)	ATTIC SF

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=105mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-10-6, Interior (1) 1-10-6 to 13-0-0, Exterior(2R) 13-0-0 to 17-6-5, Interior (1) 17-6-5 to 19-0-0, Exterior(2R) 19-0-0 to 23-6-5, Interior (1) 23-6-5 to 33-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for

Wind(LL)

-0.21

13-14

>999

240

Weight: 238 lb

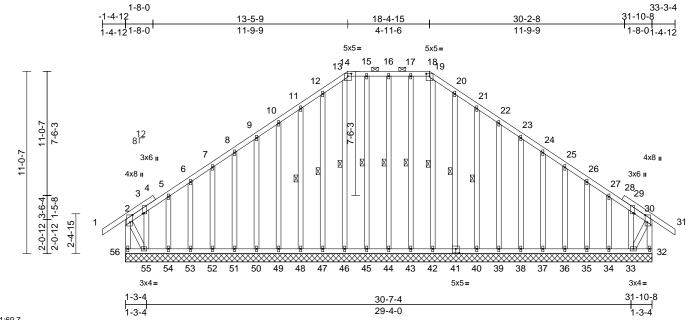
FT = 20%

- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 231 lb uplift at joint 9 and 231 lb uplift at joint 15.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 0) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 1) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.
- LOAD CASE(S) Standard

This item has been electronically signed and sealed by Velez, Joaquin, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date

April 13,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-5	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T30302914

 Run: 8.92 E 8.63 Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Thu Apr 13 08:06:58
 Page: 1

 ID:H68aJIOkf11EdmikxGN3fLzVQVa-HdsSBqGZD6MOwyshww1vu_XCRuPW3nyXN3Cf?WzRCUT
 Page: 1

Scale = 1:69.7

	(,, ,). [2.0	-o-4,∟ugej,	[3:0-0-9,0-1-0], [14:0	0-2-0,0	1-10], [10.0-2-0	J,0-1-10],	[23.0-0-3		0.0-0-4,∟uge	, [+1.0-	2-0,0-3-0	'I			
Loading		(psf)	Spacing	2-0-0)	CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC		0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC		0.04	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB		0.09	Horz(CT)	0.01	32	n/a	n/a	-	
BCDL		10.0	Code	FBC	2020/TPI2014	Matri	x-AS							Weight: 361 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N Structural except er (10-0-0 m	o.1 o.2 o.2 I wood shea nd verticals, nax.): 14-18 ing directly midpt		s ,		Max Gra	34=10 $36=11$ $38=11$ $40=11$ $42=11$ $44=10$ $46=11$ $48=11$ $50=11$ $52=11$ $54=10$	06 (LC 18), 10 (LC 18), 10 (LC 18), 11 (LC 18), 10 (LC 1), 10 (LC 1), 14 (LC 22), 14 (LC 17), 10 (LC 17), 11 (LC 17), 10 (LC	33=212 (LC 35=112 (LC 37=111 (LC 39=111 (LC 41=110 (LC 45=108 (LC 47=112 (LC 49=111 (LC 51=111 (LC 55=317 (LC	18), 18), 18), 18), 1), 1), 1), 17), 17), 17),	BOT CH	IORD	53-54 51-52 49-50 47-48 45-46 43-44 41-42 39-40 37-38 35-36 33-34	=-270/250, 54-56 =-123/155, 52-55 =-123/155, 50-51 =-123/155, 48-49 =-123/155, 44-45 =-123/155, 44-45 =-123/155, 42-43 =-124/156, 38-33 =-124/156, 34-37 =-124/156, 34-37 =-124/156, 32-33 =-124/156, 32-33 =-81/51, 15-45==	3=-123/155, 1=-123/155, 3=-123/155, 7=-123/155, 3=-123/155, 3=-123/155, 1=-124/156, 3=-124/156, 7=-124/156, 5=-124/156,
REACTIONS	(Ib/size)	34=102/3 36=107/3 38=107/3 40=106/3 42=110/3 44=107/3 46=109/3 48=107/3	$\begin{array}{l} 1\text{-}10\text{-}8, \ 33\text{=}63/31\text{-}10\\ 1\text{-}10\text{-}8, \ 35\text{=}108/31\text{-}11\\ 1\text{-}10\text{-}8, \ 37\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 39\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 41\text{=}108/31\text{-}11\\ 1\text{-}10\text{-}8, \ 43\text{=}108/31\text{-}11\\ 1\text{-}10\text{-}8, \ 45\text{=}108/31\text{-}11\\ 1\text{-}10\text{-}8, \ 47\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 47\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 47\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 51\text{=}107/31\text{-}11\\ 1\text{-}10\text{-}8, \ 51\text{=}1000000000000000000000000000000000000$	0-8, 0-8, 0-8, 0-8, 0-8, 0-8, 0-8, 0-8,	FORCES TOP CHORD	Tension 2-56=-3 3-4=-14 6-7=-13 9-10=-7 11-12= 13-14= 15-16=	1 348/250, 18/131, 4 31/120, 7 107/173, 105/256 -148/238 -154/264	1-2=0/44, 2 -5=-147/14	76/291, 54/264, 54/264,	, 133,	NOTES		9-50= 6-53= 17-43 21-40 24-37 27-34	84/61, 8-51=-84 85/62, 5-54=-82 =-81/7, 19-42=-8)=-85/67, 22-39=- '=-84/61, 25-36=-	84/67, 10-49=.84/6 //61, 7-52=-84/61, //65, 3-55=-69/6, /2/14, 20-41=-84/52 84/61, 23-38=-84/6 84/61, 26-35=-85/6 /66/8, 2-55=-308/29
	Max Horiz Max Uplift	52=107/3 54=102/3 56=173/3' 56=284 (L 32=-112 (l 34=-32 (L 38=-33 (L 40=-39 (L 48=-38 (L 48=-38 (L 50=-33 (L 52=-32 (L)	$\begin{array}{c} 1\text{-10-8, } 53\text{=}108/31\text{-}11\\ 1\text{-10-8, } 55\text{=}62/31\text{-}10\\ 1\text{-}10\text{-}8\\ \text{C} 11\\ \text{LC} 11\\ \text{J}, 33\text{=}\text{-}162 (\text{LC} 12\\ \text{C} 12), 35\text{=}\text{-}34 (\text{LC} 12\\ \text{C} 12), 37\text{=}33 (\text{LC} 12\\ \text{C} 12), 39\text{=}\text{-}32 (\text{LC} 12\\ \text{C} 12), 49\text{=}25 (\text{LC} 12\\ \text{C} 12), 41\text{=}\text{-}25 (\text{LC} 12\\ \text{C} 12), 49\text{=}\text{-}33 (\text{LC} 12\\ \text{C} 12), 49\text{=}\text{-}33 (\text{LC} 12\\ \text{C} 12), 51\text{=}\text{-}33 (\text{LC} 12\\ \text{C} 12), 51\text{=}\text{-}32 (\text{LC} 12\\ \text{C} 12), 51\text{=}\text{-}32 (\text{LC} 12\\ \text{C} 12), 55\text{=}\text{-}220 (\text{LC} 12\\ \text{C} 12), 55\text{=}\text{-}100 \text{C} 12\\ \text{C} 12 \text{C} 12\\ \text{C} 12), 55\text{=}100 \text{C} 12\\ \text{C} 12 \text{C} 12\\ \text{C} 12\\ \text{C} 12 \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12 \text{C} 12 \text{C} 12\\ \text{C} 12 \text{C} 12 \text{C} 12 \text{C} 12 \text{C} 12\\ \text{C} 12 $	0-8,)-8, 2), 2), 2), 2), 2), 2), 2), 2), 2), 2)		21-22= 23-24= 26-27=	-130/213 -84/133, : -66/61, 2	7-28=-71/7	,	4/58,				sealed by V using a Digi Printed copi document a signed and signature m on any elect Joaquin Velez PE N MiTek Inc. DBA Mi 16023 Swingley Rid Chesterfield, MO 6: Date:	ly signed and elez, Joaquin, tal Signature. ies of this re not conside sealed and the ust be verified tronic copies. io.68182 Trek USA FL Cert 663 ge Rd.

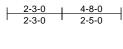
16023 Swingley Ridge Rd Chesterfield, MO 63017

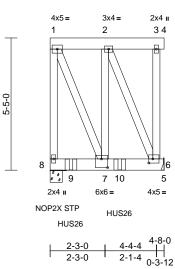
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	T-5	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T30302914

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=135mph (3-second gust)
 Vasd=105mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=32ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-4-12 to 1-9-8, Exterior(2N) 1-9-8 to 13-5-9, Corner(3R) 13-5-9 to 16-7-13, Exterior(2N) 16-7-13 to 18-4-15, Corner(3R)
 18-4-15 to 21-7-3, Exterior(2N) 21-7-3 to 33-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
 All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 258 lb uplift at joint 56, 112 lb uplift at joint 32, 25 lb uplift at joint 44, 25 lb uplift at joint 47, 38 lb uplift at joint 48, 33 lb uplift at joint 50, 33 lb uplift at joint 51, 32 lb uplift at joint 52, 34 lb uplift at joint 53, 32 lb uplift at joint 54, 220 lb uplift at joint 55, 25 lb uplift at joint 41, 39 lb uplift at joint 37, 32 lb uplift at joint 36, 34 lb uplift at joint 35, 32 lb uplift at joint 36, 34 and 162 lb uplift at joint 33.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.92 E 8.63 Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Thu Apr 13 08:06:58 Page: 2 ID:H68aJIOkf11EdmikxGN3fLzVQVa-HdsSBgGZD6MOwyshwu1vu_XCRuPW3nyXN3Cf?WzRCUT



Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	FG-1	Flat Girder	1	2	Job Reference (optional)	T30302915

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:26 ID:nkSodyFKOLQN6QULyc8BvqzVQTA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

+2-3-0

Scale = 1:47.2

Plate Offsets (X, Y): [6:0-2-0,0-2-0], [7:0-3-0,0-4-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	20.0	Plate Grip DOL Lumber DOL	1.25 1.25	TC BC	0.09 0.17	Vert(LL)	0.00	6-7 6-7	>999 >999	360 240	MT20	244/190
BCLL	7.0 0.0*	Rep Stress Incr	1.25 NO	WB	0.17	Vert(CT) Horz(CT)	-0.01 0.00	6-7	>999 n/a	240 n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MP	0.09	Wind(LL)	0.00	6-7	>999	240	Weight: 113 lb	FT = 20%
DODL	10.0	Code	1 DO2020/11 12014	Width A-IVII		Wind(LL)	0.00	0-7	2333	240	Weight. 113 lb	11 = 2070
BOT CHORD 2x6 3 WEBS 2x4 3 BRACING TOP CHORD Stru 4-8-1 BOT CHORD Rigin brac REACTIONS (size) Max H Max L Max C FORCES (b) - Tens TOP CHORD 1-8= 3-4= BOT CHORD 7-8= WEBS 2-6= NOTES 1) 2-ply truss to be (0.131"x3") nails Top chords conn oc, 2x6 - 2 rows Bottom chords cc staggered at 0-8 Web connected 3 2) All loads are con except if noted a CASE(S) section provided to distri unless otherwise 3) Wind: ASCE 7-11 Vasd=105mph; T B=45ft; L=24ft; e MWFRS (direction	0 oc purlins, ex d ceiling directly ing. 6= Mecha loriz 8=-173 (L Brav 6=1155 (L Maximum Com ion -890/263, 1-2=- 0/0, 3-6=-89/46 -154/134, 6-7=- -896/253, 2-7=- connected toge as follows: ected as follows: ected as follows: staggered at 0-5 onnected toge as follows: 2x4 - sidered equally s front (F) or ba . Ply to ply com oute only loads indicated. 5; Vult=135mph (CDL=4.2psf; Br; ave=4ft; Cat. II; ave=4ft; cat. II;	C 5), 8=-356 (LC 4) .C 13), 8=1564 (LC 1) pression/Maximum 336/111, 2-3=-67/61 138/365, 5-6=0/0 157/767, 1-7=-249/8 ther with 10d s: 2x4 - 1 row at 0-9-0 .c. ovs: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	 verifying ap requirement 5) Provide ade 6) All plates an d or 7) This truss h chord live lo 8) * This truss on the botto 3-06-00 tall chord and a 9) Refer to gin 10) Provide me bearing plat joint 8 and 3 11) Use MiTek 4.16d nails max. startin connect trus 93 12) Fill all nail h LOAD CASE(S) 11) Dead + Rc 12) Flate Incre 02 Uniform Lo Vert: 1-3 Concentra Vert: 9= AD 	of Live (balanced): ase=1.25	shown c e of this prevent v iss other or a 10.0 with any for a liv is where Il fit betw uss comr (by oth anding 3 6. id nails i alent sp e left end of bottor is in cor Lumber =-20	overs rain loa truss compo- water pondin- wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 566 lb uplift a nto Girder & aced at 2-0- d to 2-10-4 to n chord.	ading nent. g. dd. dds. Dpsf om to t) oc ber.				sealed by V using a Digi Printed copi document a signed and signature m on any elect Joaquin Velez PE N MiTek Inc. DBA Mi 16023 Swingley Rid Chesterfield, MO 6: Date:	y signed and elez, Joaquin, PE tal Signature. es of this re not considered sealed and the ust be verified tronic copies.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Veniy design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIL-7475 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	C-2	Piggyback	24	1	Job Reference (optional)	T30302916

2-2-11

2-2-11

12 8 Г

-0-8-9

0-8-9

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

1-11-12

requirements specific to the use of this truss component. 5) Gable requires continuous bottom chord bearing. Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:25 ID:qjAUoO?5tOK7dSXLsmHohuzVQUo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

3

4-5-6

2-2-11

5-1-15

0-8-9

4

Ø

2x4 =

5

 $\frac{1}{2}$

Scale = 1:24.3

Scale = 1.24.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020/TPI2	CSI TC BC WB 014 Matrix-AS	0.05 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=4-5-6, 4 7=4-5-6, 7 Max Horiz 2=-39 (LC Max Uplift 2=-42 (LC 7=-42 (LC Max Grav 2=115 (LC (LC 1), 7= 1) (lb) - Maximum Com Tension 1-2=0/14, 2-3=-55/6	applied. 4=4-5-6, 6=4-5-6, 11=4-5-6 2 10), 7=-39 (LC 10) 2 12), 4=-42 (LC 12), 2 12), 11=-42 (LC 12), 2 12), 11=-42 (LC 12), 2 11, 4=115 (LC 1), 6 =115 (LC 1), 11=115 apression/Maximum 2, 3-4=-55/62, 4-5=0	7) This chore 8) * This on th d. 3-06- chore 9) Provi beari 2, 42 uplift 10) This =149 chore (LC the b 11) See 9 Detai consi	e studs spaced at 4-0-0 truss has been designe I live load nonconcurre s truss has been designe e bottom chord in all ar 00 tall by 2-00-00 wide d and any other membe de mechanical connec ng plate capable of witi lb uplift at joint 4, 42 lb at joint 4. truss design requires th tural wood sheathing b 1 and 1/2" gypsum sher ottom chord. Standard Industry Pigg I for Connection to bas ult qualified building de ASE(S) Standard	ed for a 10. Int with any ned for a livit reas where a will fit betw ers. tion (by other hstanding a b uplift at jour nat a minime applied do etrock be a yback Truss as truss as	other live loa e load of 20.0 a rectangle ween the botto ers) of truss t t2 lb uplift at j int 2 and 42 lk uum of 7/16" irectly to the t pplied directly s Connection	Dpsf om oint o top y to					
 this design Wind: ASK Vasd=105 B=45ft; L= MWFRS (cantilever right expo for reaction DOL=1.6C Truss dest only. For see Standor or consult Building D 	CE 7-16; Vult=135mph 5mph; TCDL=4.2psf; Bi =24ft; eave=4ft; Cat. II; (directional) and C-C E left and right exposed sed;C-C for members ons shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) zone; ; end vertical left and and forces & MWFR: oL=1.60 plate grip n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP neer responsible for nown covers rain load	1 S ss le, l 1.								sealed by V using a Digi Printed cop document a signed and signature m on any elec Joaquin Velez PE N	ly signed and elez, Joaquin, PE ital Signature. ies of this ire not considered sealed and the just be verified tronic copies. 56.68182 Tick USA FL Cert 6634

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

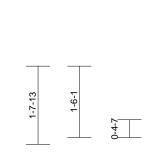
Job	Truss	Truss Type	Qty	Ply	GAINEY RESIDENCE	
23-0202-A1	C-1	Piggyback	2	1	Job Reference (optional)	T30302917

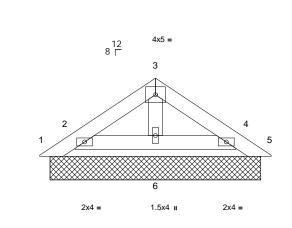
-0-8-15

0-8-15

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 12 11:28:23 ID:xV_q5fMwpc6tD3q6d3pqvDzVQUK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-4-12


1-8-6

4-1-11

0-8-15

Page: 1

3-4-12

1-8-6

1-8-6

Scale = 1:24.3

		1			1		1						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 15 lb	FT = 20%
LUMBER			4)	Building Des	signer / Project en	gineer re	sponsible for						
TOP CHORD	2x4 SP No.2		,	verifying app	olied roof live load	shown c	overs rain loa	ading					
BOT CHORD	2x4 SP No.2				s specific to the u			nent.					
OTHERS	2x4 SP No.2		5)		res continuous bot		d bearing.						
BRACING			6)		spaced at 1-4-0 c								
FOP CHORD		athing directly applied	l. 7)		as been designed ad nonconcurrent			do					
SOT CHORD	Rigid ceiling directly	applied.	8)		has been designe								
REACTIONS		2=4-5-6, 4=4-5-6,	0)					ры					
	,	6=4-5-6, 7=4-5-6		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
	Max Horiz 1=32 (LC	,			ny other members								
	Max Uplift 1=-27 (LC	5 10), 2=-21 (LC 12), C 12), 5=-10 (LC 22),	9)	Provide med	chanical connectio	on (by oth	ers) of truss t	to					
	4=-28 (LC 7=-21 (LC				e capable of withs								
	Max Grav 1=19 (LC				t at joint 4, 27 lb u		nt 1, 10 lb up	lift					
		C 22), 5=6 (LC 12), 6=	106 10		d 21 lb uplift at joir								
	(LC 1), 7=	=139 (LC 17)	10		esign requires that bod sheathing be			ton					
FORCES	(lb) - Maximum Corr	pression/Maximum			/2" gypsum sheeti								
	Tension			the bottom of				,					
TOP CHORD	1-2=-36/53, 2-3=-38	/44, 3-4=-36/44,	11) See Standa	rd Industry Piggyb	ack Trus	s Connection						
	4-5=-6/27	10.0		Detail for Co	onnection to base	truss as a	applicable, or						
BOT CHORD	2-6=-12/33, 4-6=-12	/33		consult qual	ified building desig	gner.							
NEBS	3-6=-48/16		LC	DAD CASE(S)	Standard								
NOTES													
,	ed roof live loads have	been considered for										This item he	a haan
this design												This item ha	as been

- Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=105mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; 2) B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

signed and sealed and the signature must be verified on any electronic copies. Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date: April 13,2023

electronically signed and sealed by Velez, Joaquin, PE

using a Digital Signature.

document are not considered

Printed copies of this

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

