

TYPICAL HEADER STRAPING DETAIL

OUTSIDE CORNER

OSB-

INSIDE CORNER

(TYP.) CORNER FRAMING

-8d 6" OC @ PANEL EDGES

8d 12" OC NOT @ PANEL EDGES -

.131"X3 1/4" NAILS 12" OC-

8d 6" OC @ PANEL EDGES -

2X_FULL HEIGHT STUDS (TYP.) ---

8d 12" OC NOT @ PANEL EDGES -

2X_FULL HEIGHT STUDS (TYP.)-

.131"X3 1/4" NAILS 12" OC ---

- 8d 6" OC @ PANEL EDGES 8d 12" OC NOT @ PANEL EDGES

--- EXTERIOR WALL

- 8d 6" OC THIS STUD FOR SHEAR TRANSFER

-8d 6" OC @ PANEL EDGES

8d 12" OC NOT @ PANEL EDGES

- 2X_ FULL HEIGHT STUDS (TYP.)

8d 6" OC @ PANEL EDGES-

.131"X3 1/4" NAILS 6" OC ---

INTERIOR SHEARWALL -

.131"X3 1/4" NAILS 12" OC ---

1/2" GWB UNBLOCKED ----

7" OC EDGE 10" OC FIELD

5d COOLER NAILS

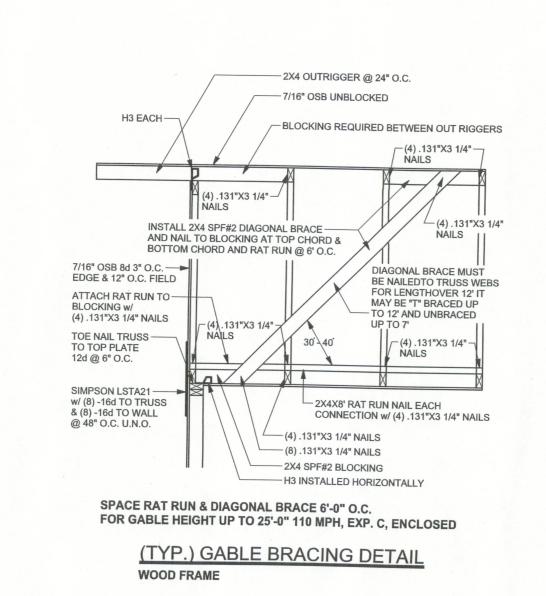
WOOD FRAME

---- 8d 12" OC NOT @ PANEL EDGES

OSB-

(TYP.) INTERSECTING WALL FRAMING

-1/2" GWIB UNBLOCKED


7" OC EDGE 10" OC FIELD

5d COOLLER NAILS

- 1/2" GWB UNBLOCKED

7" OC ED)GE 10" OC FIELD

(TYP.) GABLE WALL w/ VAULTED CEILING WOOD FRAME

GENERAL NOTES:

OPTION: 1 (BUCKET)

-HUC410

18-16d TO FACE

-(2) 2X_ SYP#2 TOP PLATE -

10-10d TO JOIST 3" NOTCH-

—BEAM TO BEAR ON —

(2) 2X_SPF#2 JACKS

-2X_PT SYP#2 PLATE:-

WITHIN 3" OF STUD PACK

GRADE & SPECIES TABLE

SYP #2

SYP #2

SYP#2

24F-V3 SP

MICROLAM

PARALAM

LSL TIMBERSTRAND 1700

GLB

1/2" ANCHOR

2" WASHER

(TYP.) BEAM TO WALL

WOOD FRAME W/ STRAPS & ANCHORS

(2) MTS20 -

OPTION: 2 (POCKETED)

POCKETED

TOP PLATE

(DROPPED BEAM)

BENEATH

IF TRUSS TO BEAM

TO BEAM SPH

STRAPS ARE NAILED

ALLOWABLE UPLIFT:

Fb (psi) | E (10⁶psi)

1.6

1.6

1.6

1.8

1.7

1.9

2.0

1200

1050

975

2400

1600

2900

2x6 SYIP #2GARAGE DOOR BUCK ATTACHMENT

DOOR: WIDTH | 3/8" x 4" LAG | 16d | (2) ROWS OF STAGGER | .131 x 3 1/4" GN

5" O.C.

4" O.C.

3" O.C.

5" O.C.

4" O.C.

3" O.C.

ATTACH GARAGE DOOR BUCK TO STUD PACK AT

EACH SIIDE OF DOOR OPENING WITH 3/8"x4" LAG

SCREWS w/ 1 WASHER LAG SCREWS MAY BE

COUNTERSUNK. HORIZONTAL JAMBS DO NOT

TRANSFIER LOAD. CENTER LAG SCREWS OR

GN PER 'TABLE BELOW:

8' -- 10'

11' -- 15'

16' -- 18'

2x6SYP #2 DOOR BUCK-

SCALE: N.T.S.

STAGGE:R 16d NAILS OR (2) ROWS OF .131 x 3 1/4"

24" O.C.

18" O.C.

16" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL

ARE NOT REQUIRED

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2007. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS.

ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

SPECIFICAL	R AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH AF LLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
CONFIRM SITE BACKFILL HEI	CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND SHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
PROVIDE MAT REQUIREMEN	ERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2007 IS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
DELIEVE THE P	NTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL D ENGINEER IMMEDIATELY.
DESIGN, PLAC	RUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS EMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, ISS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL ATIONS.

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS	
< 420	< 245	H5A	3-8d	3-8d	10 31003	
< 455	< 265	H5	4-8d	4-8d		
< 360	< 235	H4	4-8d	4-8d		
< 455	< 320	H3	4-8d	4-8d		
< 415	< 365	H2.5	5-8d	5-8d		
< 600	< 535	H2.5A	5-8d	5-8d		
< 950	< 820	H6	8-8d	8-8d		
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"		
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"		
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"		
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"		
< 760	< 655	H10-2	6-10d	6-10d		
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"		
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"		
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"		
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"		
< 2900	< 2490	2 - HTS24	12 100 1 1/2	12-100 1 1/2"		
< 2050	< 1785	LGT2	14 -16d	14 404		
	-			14 -16d		
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION	
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROD 12" EMBEDMENT	
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT	
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT	
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT	
40-		STUD STRAP CONNECTOR*			TO STUDS	
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d	
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d	
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d	
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d	
< 885	< 760	SP4			6-10d, 1 1/2"	
< 1240	< 1065	SPH4			10-10d, 1 1/2"	
< 885	< 760	SP6			6-10d, 1 1/2"	
< 1240	< 1065	SPH6			10-10d, 1 1/2"	
< 1235	< 1165	LSTA18	14-10d		, , , , , , , , , , , , , , , , , , , ,	
< 1235	< 1235	LSTA21	16-10d			
< 1030	< 1030	CS20	18-8d			
< 1705	< 1705	CS16	28-8d			
		STUD ANCHORS*	TO STUDS		TO FOUNDATION	
< 1350	< 1305	LTT19	8-16d			
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB	
< 2775	< 2570	HD2A	2-5/8" BOLTS		1/2" AB	
< 4175	< 3695	HTT16	18 - 16d		5/8" AB	
< 1400	< 1400	PAHD42	16-16d		5/8" AB	
< 3335	< 3335	HPAHD22	16-16d			
< 2200	< 2200	ABU44	12-16d		4/08 A.D.	
< 2300	< 2300	ABU66	12-16d		1/2" AB	
< 2320	< 2320	ABU88			1/2" AB	

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2007, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2007 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

MASONRY NOTES:

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER IN WRITING.

	ACI530.1-02 Section	Specific Requirements		
1.4A	Compressive strength	8" block bearing walls F'm = 1500 psi		
2.1	Mortar	ASTM C 270, Type N, UNO		
2.2	Grout	ASTM C 476, admixtures require approva		
2.3	CMU standard	ASTM C 90-02, Normal weight, Hollow, medium surface finish, 8"x8"x16" running bond and 12"x12" or 16"x16" column block		
2.3	Clay brick standard	ASTM C 216-02, Grade SW, Type FBS, 5.5"x2.75"x11.5"		
2.4	Reinforcing bars, #3 - #11	ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5)		
2.4F	Coating for corrosion protection	Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 304SS		
2.4F	Coating for corrosion protection	Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet metal ties not completely embedded in mortar or grout, ASTM A153, Class B2, 1.50 oz/ft2 or 304SS		
3.3.E.2	Pipes, conduits, and accessories	Any not shown on the project drawings require engineering approval.		
3.3.E.7	Movement joints	Contractor assumes responsibility for type and location of movement joints if not detailed on project drawings.		

DESIGN DATA

WIND LOADS PER FLORIDA BUILDING CODE 2007	7 RESIDENT	IAL, SE	CTION	R301.2.	.1
(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS W MEAN ROOF HEIGHT NOT EXCEEDING LEAST I ON UPPER HALF OF HILL OR ESCARPMENT 60I SLOPE AND UNOBSTRUCTED UPWIND FOR 50S	TURIZUNTA	L DIME	NSION	OR 60	FT; N
BUILDING IS NOT IN THE HIGH VELOCITY HURF	RICANE ZON	JF	-C VVIII	CHEVE	K 15 L
BUILDING IS NOT IN THE WIND-BORNE DEBRIS		-			
1.) BASIC WIND SPEED = 110 MPH	TEGION				
2.) WIND EXPOSURE = C					
3.) WIND IMPORTANCE FACTOR = 1.0					
4.) BUILDING CATEGORY = II				-	
5.) ROOF ANGLE = 10-45 DEGREES					
6.) MEAN ROOF HEIGHT = <30 FT					_
7.) INTERNAL PRESSURE COEFFICIENT = N/A	/ENCLOSE	- DIIII F			
COMPONENTS AND CLADDING DESIGN WII					
, same one interview of Abblind Design Wil	ND PRESSU	JRES (1	ABLE	R301.2	(2))
*	Zone	Effec	tive W	ind Ar	ea (ft:
			10	T	100
2	1		-30.5		-25.
	2	27.8	-35.7	25.3	-30.
2 2 1	2 O'hg	07.0	-56.8		-56.
4 5 2 5	3 3 O'hg	27.8	-35.7	25.3	-30.
4	4	30.5	-95.6 -33.0	25.0	-59.
5 5	5	30.5		25.9	-28. -31.
THE PART OF THE PA					101.
[2]	Doors &	& vvind st Case		30.5	-40.
(3)	(Zone				-
	8x7 Gara			27.3	-32.0
4 /2/ 15	16x7 Ga	-		25.9	-29.4
55					
					_
DESIGN LOADS					
FLOOR 40 PSF (ALL OTHER DWELLING ROOMS	,				
30 PSF (SLEEPING ROOMS))				
30 PSF (ATTICS WITH STORAGE)					
10 PSF (ATTICS WITHOUT STORAGE, <3 ROOF 20 PSF (FLAT OR <4:12)	3:12)				
16 PSF (4:12 TO <12:12)					
12 PSF (12:12 AND GREATER)					
STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) SOIL BEARING CAPACITY 1000PSF)				

REVISIONS

SOFTPIAN

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form or manner without first the express written
permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have
examined this plan, and that the applicable
portions of the plan, relating to wind engineering
comply with section R301.2.1, florida building
code residential 2007, to the best of my
knowledge.

LIMITATION: This design is valid for one
building, at specified location.

MARK DISOSWAY
P.E. 53915

WINDLOAD ENGINEER: Mark Disosway,

PE No.53915, POB 868, Lake City, FL

Stated dimensions supercede scaled

dimensions. Refer all questions to Mark Disosway, P.E. for resolution.

Do not proceed without clarification.

2056, 386-754-5419

DIMENSIONS:

Blake Construction

Bryan & Summer
Buckles Addition

ADDRESS: Columbia County, Florida

Mark Disosway P.E.
P.O. Box 868
Lake City, Florida 32056
Phone: (386) 754 - 5419
Fax: (386) 269 - 4871

PRINTED DATE:
March 08, 2010

DRAWN BY: STRUCTURAL BY
David Disosway

FINALS DATE: 15Dec09 JOB NUMBER:

> 912021 DRAWING NUMBER **S-1**

OF 3 SHEETS