

RE: ZEDICKS -	MiTek USA, Inc.
Site Information:	6904 Parke East Blvd.
Customer Info: BRYAN ZECHER CONST Lot/Block: Address: 463 SW CR240	RUCTION Project Name: DICKS RESIDENCE Model: Subdivision:
City: LAKE CITY	State: FL
Name Address and License # of Structu Name: Address: City:	ral Engineer of Record, If there is one, for the building. License #: State:
	esign Loads (Individual Truss Design Drawings Show Special
Design Code: FBC2020/TPI2014	Design Program: MiTek 20/20 8.4
Wind Code: N/A	Wind Speed: 130 mph
Roof Load: 40.0 psf	Floor Load: N/A psf
	Design Drawings and 0 Additional Drawings.

This package includes 82 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T22707749	А	2/3/21	15	T22707763	A10ET	2/3/21
2	T22707750	A1	2/3/21	16	T22707764	A11	2/3/21
3	T22707751	A1ET	2/3/21	17	T22707765	A12	2/3/21
4	T22707752	A2	2/3/21	18	T22707766	A13	2/3/21
5	<u>T22707753</u>	A2ET	2/3/21	19	<u>T22707767</u>	A13ET	2/3/21
6	<u>T22707754</u>	A3	2/3/21	20	<u>T22707768</u>	A14	2/3/21
7	T22707755	A4	2/3/21	21	T22707769	A15	2/3/21
8	T22707756	A5	2/3/21	22	T22707770	A15ET	2/3/21
9	T22707757	ASET	2/3/21	23	T22707771	A16	2/3/21
10	T22707758	AG	2/3/21	24	T22707772	A17	2/3/21
11	T22707759	A7	2/3/21	25	T22707773	B1	2/3/21
12	T22707760	A8	2/3/21	26	T22707774	B2	2/3/21
13	T22707761	A9	2/3/21	27	T22707775	B3	2/3/21
14	T22707762	A10	2/3/21	28	T22707776	B4	2/3/21

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

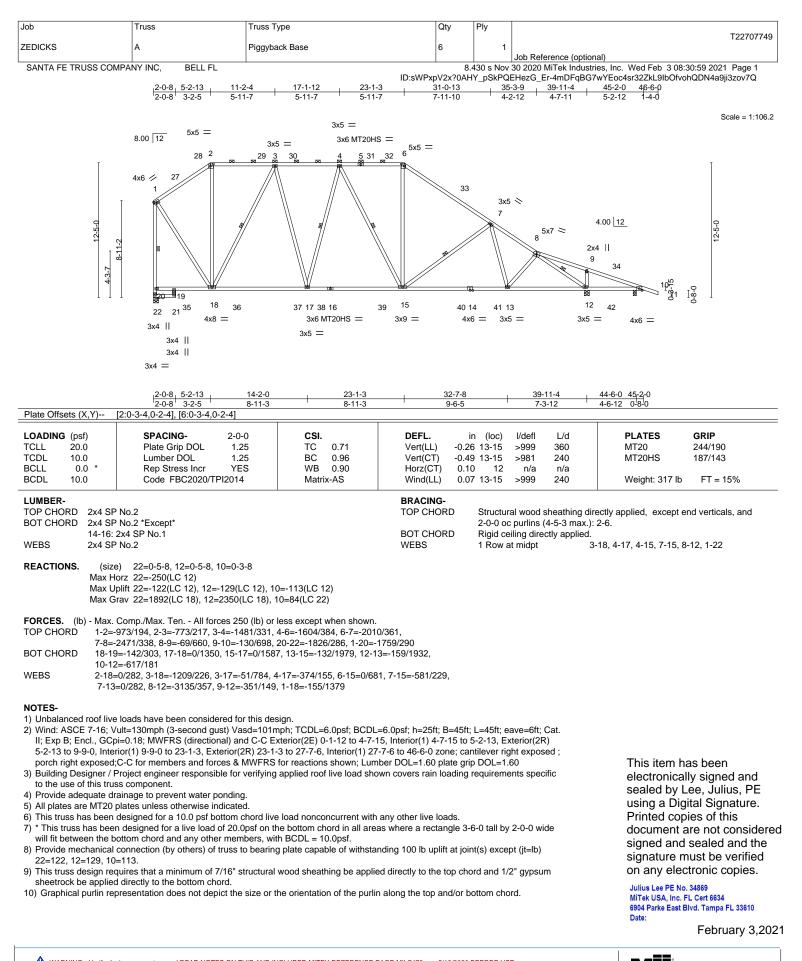
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

February 3,2021


RE: ZEDICKS -

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

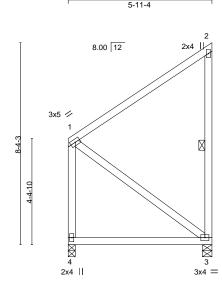
Customer Info: BRYAN ZECHER CONSTRUCTION Project Name: DICKS RESIDENCE Model: Lot/Block: Subdivision: Address: 463 SW CR240 City: LAKE CITY State: FL

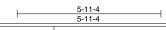
N 2333333333344444444444455555555555566666666	Seal# T22707778 T22707778 T22707780 T22707780 T22707781 T22707783 T22707783 T22707785 T22707785 T22707786 T22707787 T22707789 T22707790 T22707790 T22707791 T22707792 T22707793 T22707795 T22707795 T22707796 T22707796 T22707790 T22707780 T22707780 T22707800 T22707800 T22707800 T22707800 T22707800 T22707801 T22707805 T22707805 T22707805 T22707806 T22707805 T22707807 T22707811 T22707813 T22707813 T22707814 T22707815 T22707817 T22707818 T22707818 T22707818 T22707817 T22707818 T22707818 T22707818 T22707819 T22707820 T22707820 T22707820 T22707820	Truss Name B5 B6 B7 B8 BET CCJ09 CJ09A D1 D2 D3 D4 D5 D6 D7 DET EET EJ7 EJ7 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	Date 2/3/21
71	T22707819	K9	2/3/21
72	T22707820	K10	2/3/21
73	T22707821	K11	2/3/21
74	T22707822	L1	2/3/21

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

B.430 s Nov 30 2020 Millek Industries, Inc. Wed Feb 3 08:30:59 2021 Page 1 ID:sWPxpV2x?0AHY_pSkPQEHezG_Er-4mDFqBG7wYEoc4sr32ZkL9lfif2VhdRN4a9ji3zov7Q 5-11-4


Structural wood sheathing directly applied, except end verticals.


2-3

Rigid ceiling directly applied.

1 Row at midpt

Scale: 1/4"=1'

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYES	CSI. TC 0.50 BC 0.41 WB 0.12	Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) -0.0	12 3-4 00 3	l/defl >999 >555 n/a	L/d 360 240 n/a	MT20 2	RIP 44/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-AS	Wind(LL) 0.0	0 4	****	240	Weight: 47 lb	FT = 15%

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 4=0-3-8, 3=0-4-12 Max Horz 4=109(LC 12) Max Uplift 3=-130(LC 12) Max Grav 4=226(LC 1), 3=251(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 1-3=-144/262

NOTES-

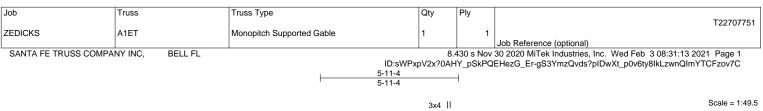
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-9-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

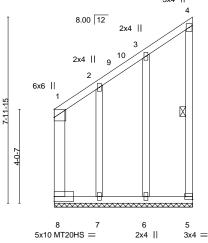
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=130.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

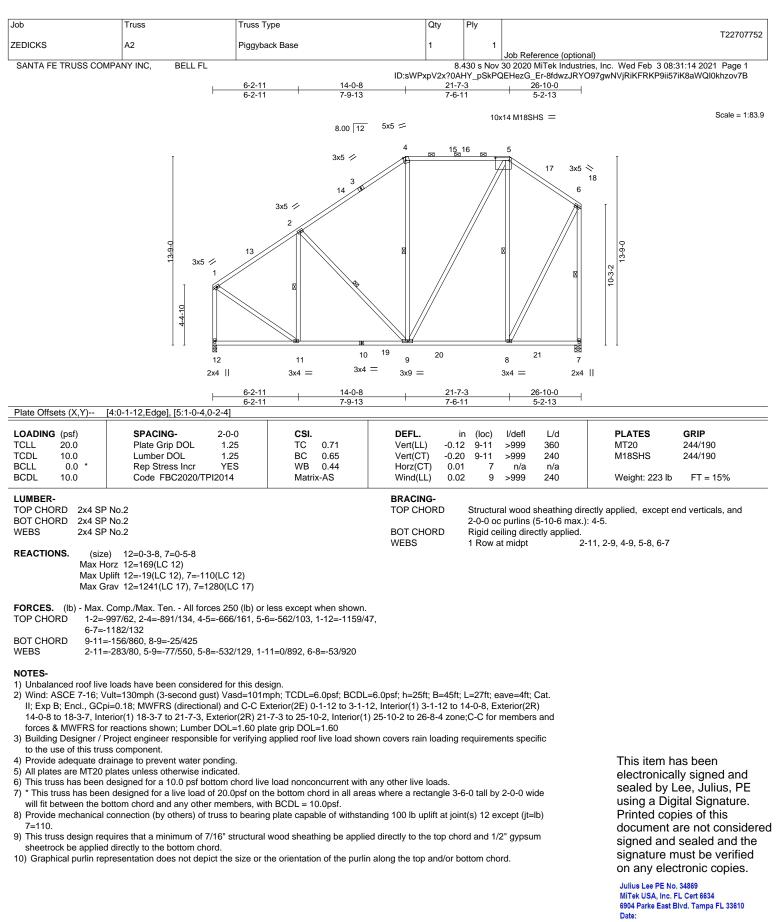

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

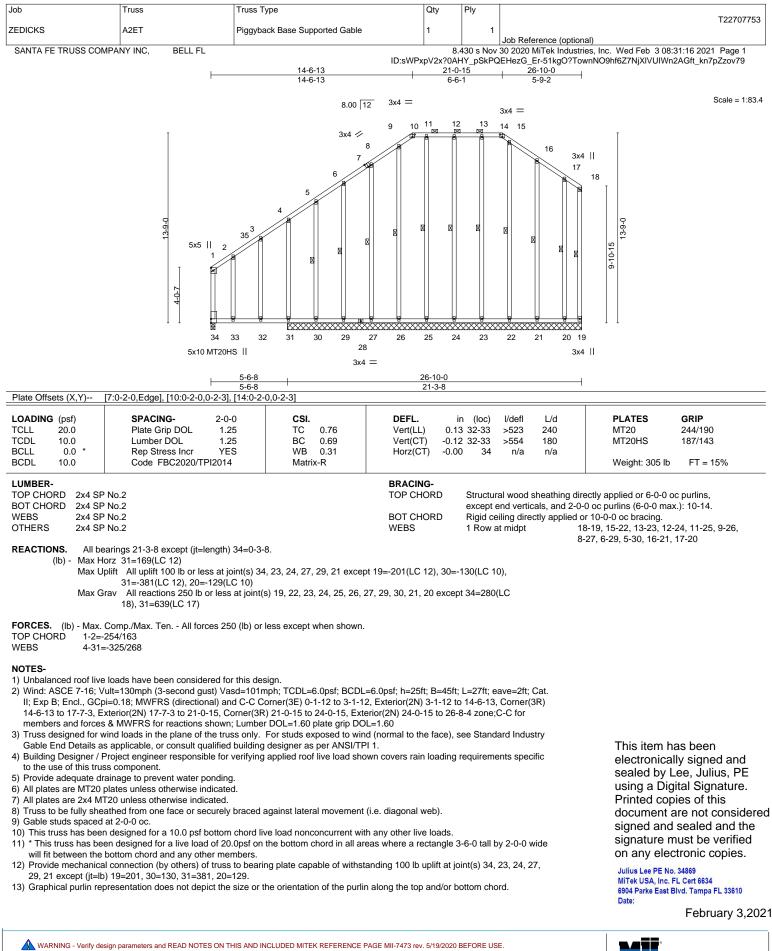
H

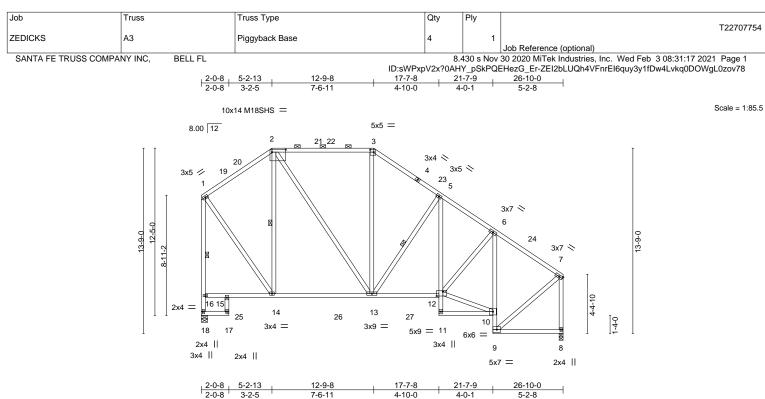
5-11-4 5-11-4


Plate Offsets (X,Y)	[5:Edge,0-1-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2020/TPI2014	CSI. TC 0.89 BC 0.82 WB 0.19 Matrix-R	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 56 lb FT = 15%
	2 No.1 2 No.2 *Except* 4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	nd verticals. iling directly applied o	ectly applied or 2-2-0 oc purlins, or 6-9-5 oc bracing. -5
(Ib) - Max H Max U Max G FORCES. (Ib) - Max. TOP CHORD 1-8=-	earings 5-11-4. orz 8=227(LC 11) plift All uplift 100 lb or less at joint(s) 6 irav All reactions 250 lb or less at joint(Comp./Max. Ten All forces 250 (lb) or 552/381, 1-2=-572/418 450/627	s) 5, 6 except 8=436(LC 1	11), 7=319(LC 17)	C 9)		
 II; Exp B; Encl., GCp vertical right expose 2) Truss designed for w Gable End Details a: 3) Building Designer / F to the use of this trus 4) All plates are MT20 5) Truss to be fully she 6) Gable studs spaced 7) This truss has been 8) * This truss has been will fit between the b 	plates unless otherwise indicated. athed from one face or securely braced at 2-0-0 oc. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti ottom chord and any other members. connection (by others) of truss to bearin	orner(3E) 0-2-12 to 3-2-1. S for reactions shown; Lu For studs exposed to win designer as per ANSI/TF applied roof live load sho against lateral movement b load nonconcurrent with the bottom chord in all are	2, Exterior(2N) 3-2-12 to mber DOL=1.60 plate g id (normal to the face), s own covers rain loading (i.e. diagonal web). any other live loads. as where a rectangle 3-	5-9-8 zon rrip DOL=1 see Standa requiremen 6-0 tall by 3	ne; end .60 ard Industry nts specific 2-0-0 wide	This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the

signed and sealed and the signature must be verified on any electronic copies. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021


February 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

	2-0-8 3-2-5	7-0-1
Plate Offsets (X,Y)	[2:1-0-4.0-2-4], [3:0-3-4.0-2-4], [12:0-5-8.0-4-0]	

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCodeFBC2020/TPI2014	CSI. TC 0.75 BC 0.88 WB 0.25 Matrix-AS	Vert(LL) -0.12 Vert(CT) -0.22 Horz(CT) 0.26	n (loc) l/defl 2 10-11 >999 2 10-11 >999 5 8 n/a 5 10-11 >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 232 lb	GRIP 244/190 244/190 FT = 15%
BOT CHORD 2x4 S 6-9: 2	SP No.2 SP No.2 *Except* 2x4 SP No.1		BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlins (Rigid ceiling dire	4-8-2 max.): ctly applied.		nd verticals, and
REACTIONS. (s Max Max	SP No.2 ze) 18=0-5-8, 8=0-3-8 Horz 18=-169(LC 12) Uplift 18=-101(LC 12), 8=-27(LC 12) Grav 18=1307(LC 18), 8=1223(LC 18)		WEBS	1 Row at midpt	2-	·14, 5-13, 1-18	
TOP CHORD 1-2 16- 16- BOT CHORD 13- WEBS 2-1	K. Comp./Max. Ten All forces 250 (lb) or =-675/77, 2-3=-800/145, 3-5=-1005/133, 5 18=-1231/65, 1-16=-1149/81, 7-8=-1201/5 14=0/589, 12-13=0/999, 5-12=-5/307, 9-10 4=-470/145, 2-13=-77/551, 5-13=-467/114 =0/892	-6=-1288/104, 6-7=-926/63 5)=-426/25, 6-10=-714/47	,				
2) Wind: ASCE 7-16; II; Exp B; Encl., G 5-2-13 to 9-5-12, I forces & MWFRS	ve loads have been considered for this de Vult=130mph (3-second gust) Vasd=101r Cpi=0.18; MWFRS (directional) and C-C E Interior(1) 9-5-12 to 12-9-8, Exterior(2R) 12 for reactions shown; Lumber DOL=1.60 pl (Pasiet consistence reactions)	nph; TCDL=6.0psf; BCDL= xterior(2E) 0-1-12 to 3-1-12 -9-8 to 17-0-7, Interior(1) 1 ate grip DOL=1.60	2, Interior(1) 3-1-12 to 5 7-0-7 to 26-8-4 zone;C	5-2-13, Exterior(2F C-C for members a	R) nd	This item b	

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

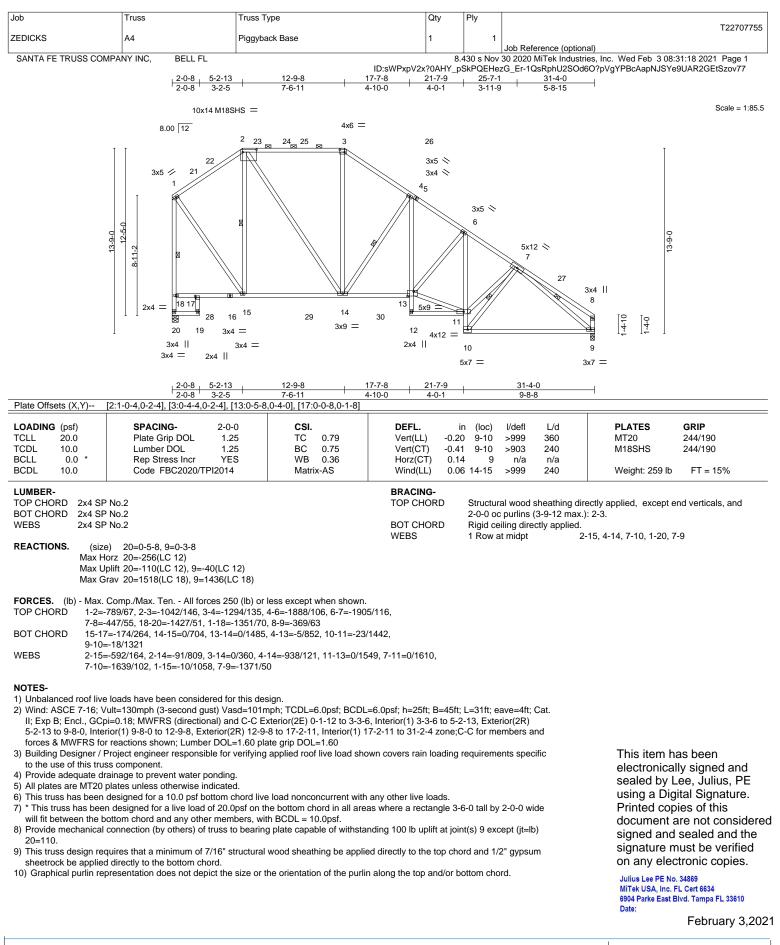
5) All plates are MT20 plates unless otherwise indicated.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

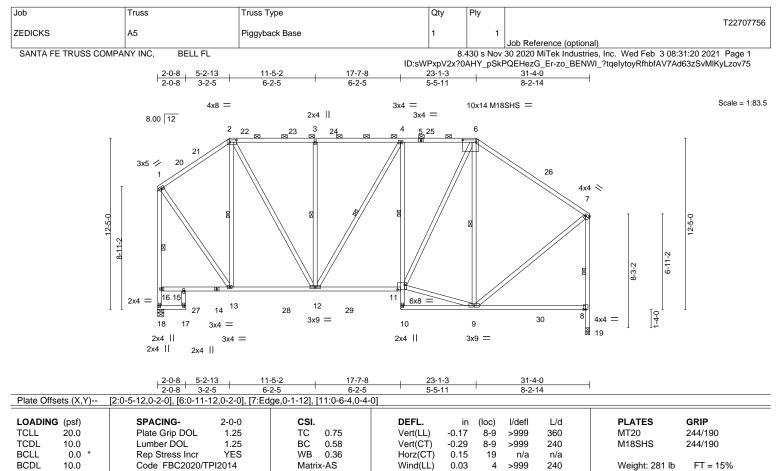
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 18=101.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

6904 Parke East Blvd Tampa, FL 36610

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood shea	thing directly applied, except end verticals, and
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins (5-5-	1 max.): 2-6.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly a	applied. Except:
			1 Row at midpt	4-11
		WEBS	1 Row at midpt	2-13, 3-12, 4-12, 6-9, 1-18, 7-19
REACTIONS.	(size) 18=0-5-8, 19=0-3-8			

INS. (size) 18=0-5-8, 19=0-3-8
 Max Horz 18=93(LC 11)
 Max Uplift 18=-89(LC 12), 19=-61(LC 12)
 Max Grav 18=1499(LC 17), 19=1454(LC 18)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-803/91, 2-3=-985/143, 3-4=-985/143, 4-6=-1048/153, 6-7=-1003/113, 16-18=-1457/85, 1-16=-1364/100, 8-19=-1454/61, 7-8=-1274/104

 BOT CHORD
 12-13=0/0559, 11-12=0/1072, 4-11=-302/97

 VEEP
 24.20

 24.20
 24.02

 25.20
 24.02

 24.20
 24.02

WEBS 2-13=-596/110, 2-12=-64/824, 3-12=-409/131, 9-11=0/792, 6-11=-38/741, 6-9=-527/85, 7-9=0/898, 1-13=-24/1017

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-6, Interior(1) 3-3-6 to 5-2-13, Exterior(2R) 5-2-13 to 9-8-0, Interior(1) 9-8-0 to 23-1-3, Exterior(2R) 23-1-3 to 27-6-6, Interior(1) 27-6-6 to 31-2-4 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) All plates are MT20 plates unless otherwise indicated.

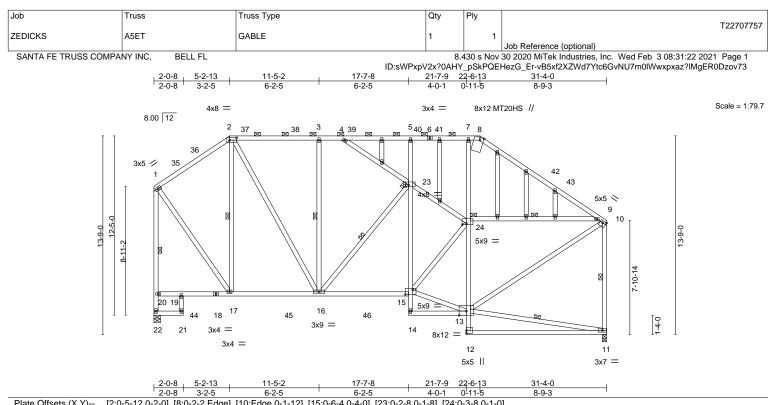
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Bearing at joint(s) 19 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 19.
 This truss design requires that a minimum of 7/45" structural used shoathing he applied directly to the ten short and 1/2" average of the short of the ten short and 1/2" average of the short of the ten short of te

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	.0	Plate Grip DOL	1.25	тс	0.75	Vert(LL)	-0.24	11-12	>999	360	MT20	244/190
CDL 10	.0	Lumber DOL	1.25	BC	0.72	Vert(CT)	-0.47	11-12	>792	240	MT20HS	187/143
BCLL 0	.0 *	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.07	11	n/a	n/a		
BCDL 10	.0	Code FBC2020/TI	PI2014	Matri	x-AS	Wind(LL)	0.03	15-16	>999	240	Weight: 335 lb	FT = 15%
LUMBER- TOP CHORD BOT CHORD	2x4 SP N	No.2				BRACING- TOP CHOR		2-0-0 o	c purlins	(5-4-1 max.):	rectly applied, except e 2-8.	nd verticals, and
VEBS DTHERS	2x4 SP M 2x4 SP M					BOT CHOR WEBS	D	0	eiling dire at midpt	ectly applied.	-17. 3-16. 16-23. 11-13	1 22 10 11 0 2
JIIEKS	284 OF 1	NU.2				JOINTS			e at Jt(s):		-17, 5-10, 10-23, 11-13	, 1-22, 10-11, 9-2-
EACTIONS.	(size)	22=0-5-8, 11=0-3-8										
	Max Ha	z 22=97(LC 11)										

Max Horz 22=97(LC 11) Max Uplift 22=-92(LC 12), 11=-59(LC 12) Max Grav 22=1487(LC 17), 11=1400(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-796/90, 2-3=-966/143, 3-4=-966/143, 4-5=-732/91, 5-7=-726/83, 7-8=-728/92, 8-9=-981/40, 9-10=-1065/102, 20-22=-1446/85, 1-20=-1353/99, 10-11=-1226/119

BOT CHORD 16-17=0/658, 15-16=-15/1181, 5-23=-300/71, 13-24=-640/142

WEBS 2-17=-598/114, 2-16=-64/797, 3-16=-290/117, 16-23=-328/60, 13-15=-67/874, 15-24=0/613, 10-13=-76/912, 1-17=-25/1012, 4-23=-304/62, 23-24=-528/119

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-6, Interior(1) 3-3-6 to 5-2-13, Exterior(2R) 5-2.424, 5-2.444, 5-2.444, 5-2.444, 5-2.444, 5-2.444, 5-2.444, 5-2.444, 5-2.444, 5-2.444,

5-2-13 to 9-8-0, Interior(1) 9-8-0 to 22-6-13, Exterior(2R) 22-6-13 to 27-0-0, Interior(1) 27-0-0 to 31-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) Provide adequate drainage to prevent water ponding.

6) All plates are MT20 plates unless otherwise indicated.

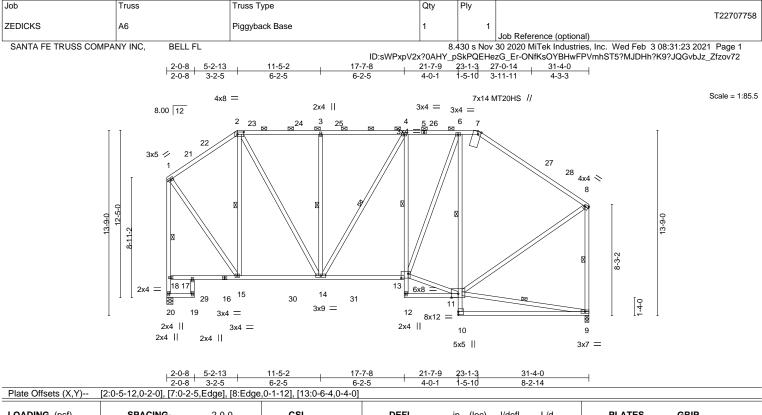
7) All plates are 2x4 MT20 unless otherwise indicated.

8) Gable studs spaced at 2-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 11.


- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.73	Vert(LL) -0.2	25 9-10 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.73	Vert(CT) -0.4	9 9-10 >768 240	MT20HS 187/143
BCLL 0.0 *	Rep Stress Incr YES	WB 0.32	Horz(CT) 0.0)7 9 n/a n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-AS	Wind(LL) 0.0	03 13-14 >999 240	Weight: 296 lb FT = 15%
LUMBER-			BRACING-		
TOP CHORD 2x4 SP	2 No.2		TOP CHORD	Structural wood sheath	ing directly applied, except end verticals, and
BOT CHORD 2x4 SP	No.2			2-0-0 oc purlins (5-1-12	max.): 2-7.
WEBS 2x4 SP	9 No.2		BOT CHORD	Rigid ceiling directly ap	plied. Except:
				1 Row at midpt	4-13, 6-11
			WEBS	1 Row at midpt	2-15, 3-14, 4-14, 9-11, 1-20, 8-9
REACTIONS. (size	e) 20=0-5-8, 9=0-3-8				
	00 00(1 0 1 1)				

Max Horz 20=93(LC 11) Max Uplift 20=-89(LC 12), 9=-61(LC 12) Max Grav 20=1496(LC 17), 9=1404(LC 18)

 FORCES.
 (b) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-801/91, 2-3=-982/143, 3-4=-982/143, 4-6=-1045/152, 6-7=-781/161, 7-8=-1019/126, 18-20=-1454/85, 1-18=-1361/100, 8-9=-1229/122

 BOT CHORD
 14-15=0/657, 13-14=0/1070, 4-13=-319/83, 6-11=-594/71

 BOT CHORD
 14-15=0/657, 13-14=0/1070, 4-13=-319/83, 6-11=-594/71

 WEBS
 2-15=-596/110, 2-14=-65/819, 3-14=-409/132, 11-13=0/830, 6-13=-18/842, 8-11=0/893, 1-15=-24/1014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-6, Interior(1) 3-3-6 to 5-2-13, Exterior(2R) 5-2-13 to 9-8-0, Interior(1) 9-8-0 to 23-1-3, Exterior(2R) 23-1-3 to 27-6-6, Interior(1) 27-6-6 to 31-2-4 zone;C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

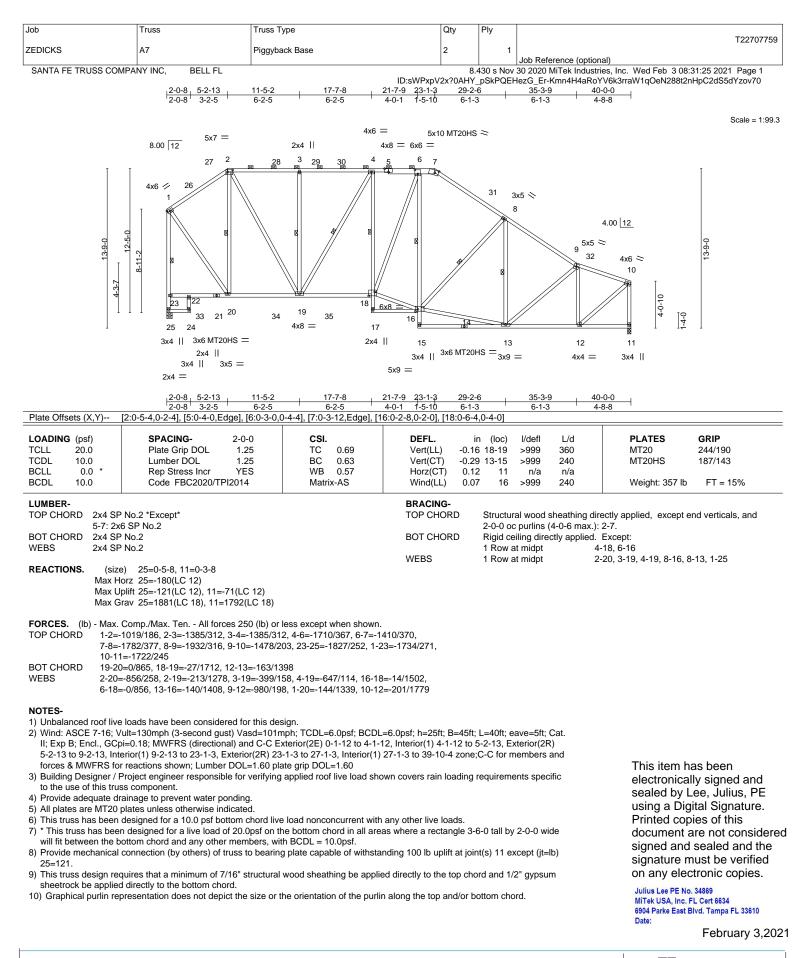
5) All plates are MT20 plates unless otherwise indicated.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

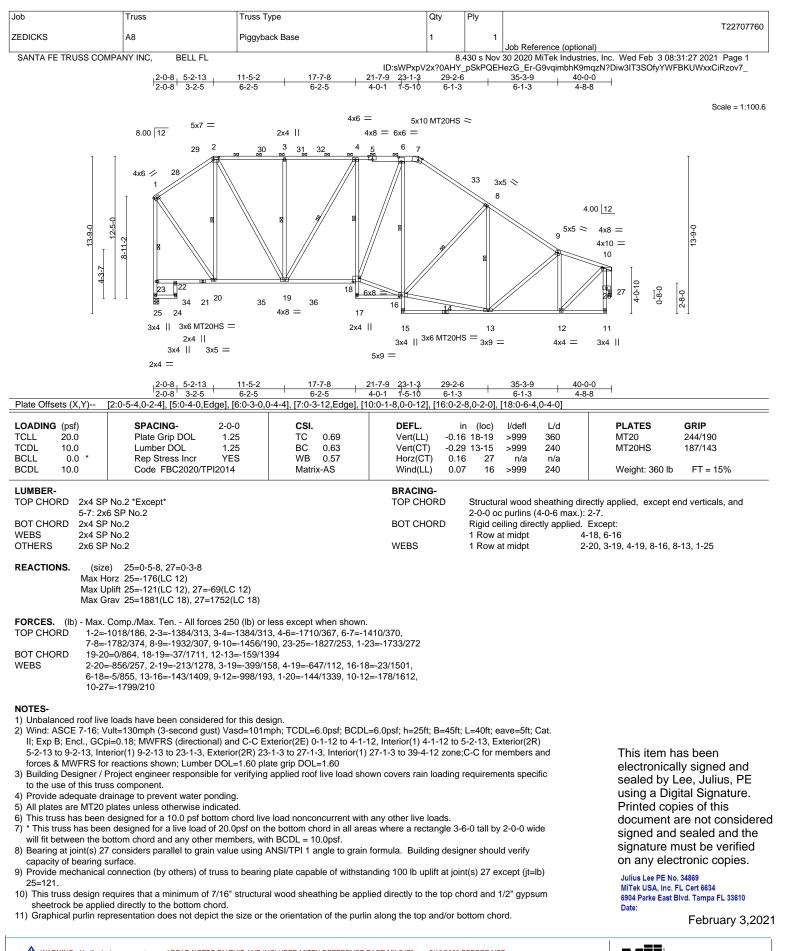
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 9.

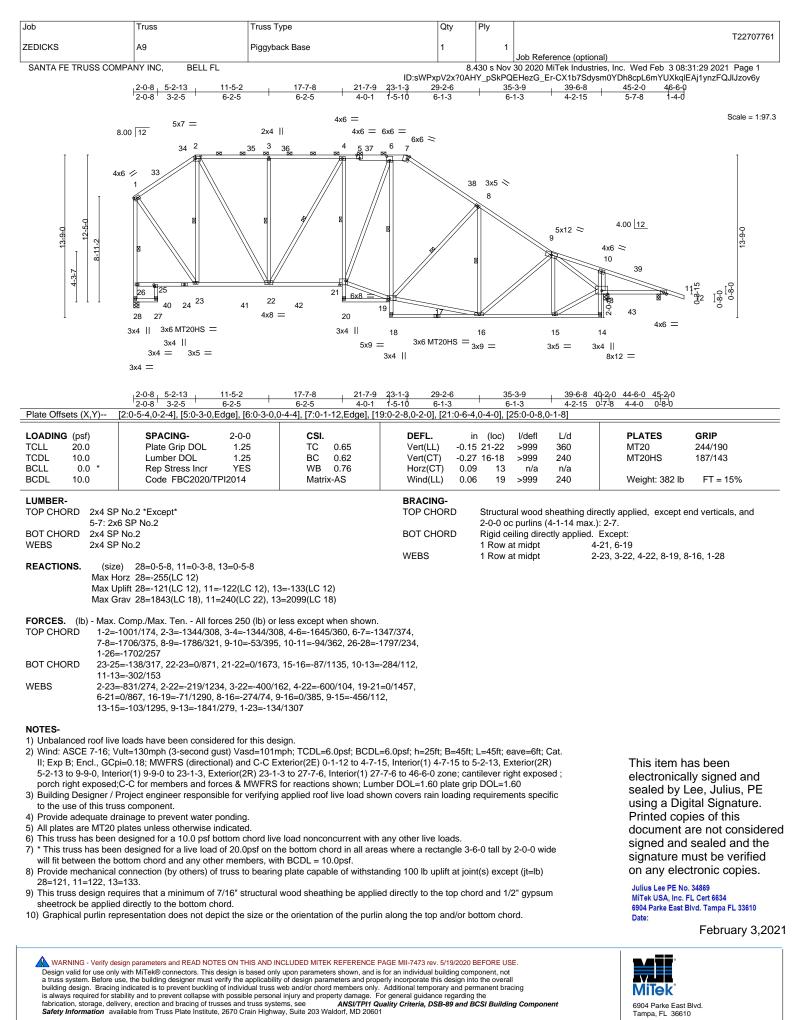
9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

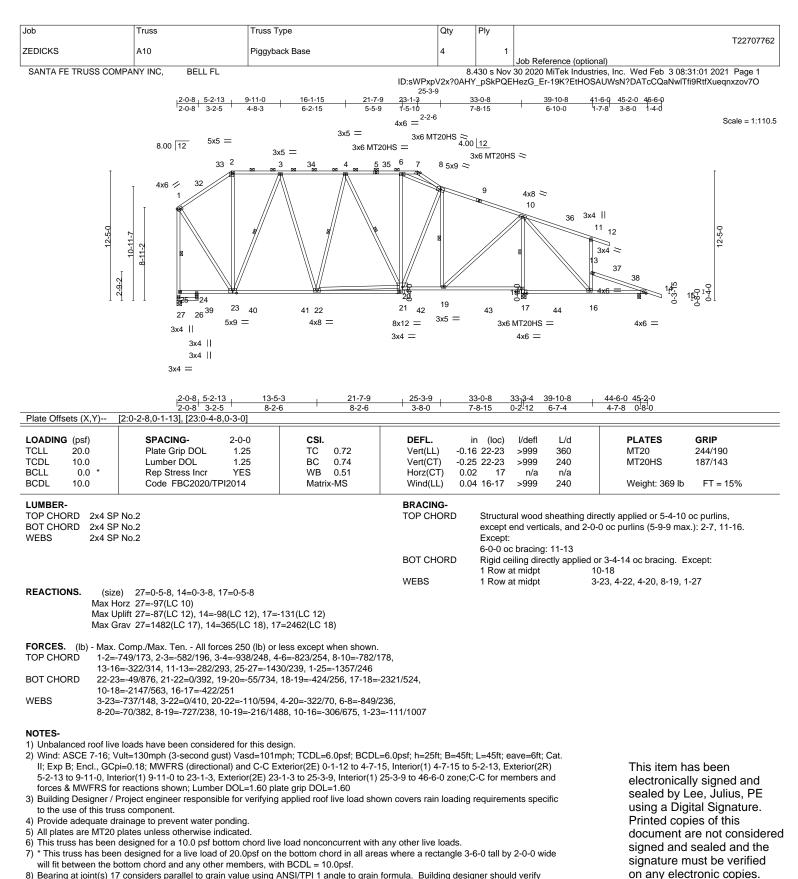
This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

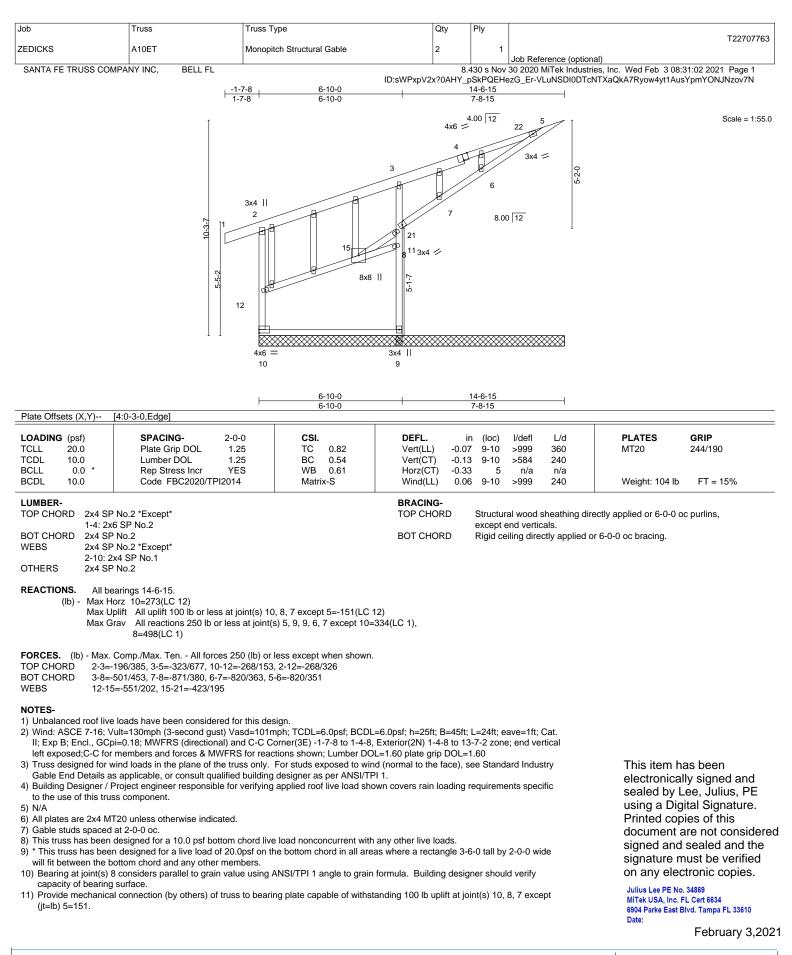
6904 Parke East Blvd Tampa, FL 36610

 Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

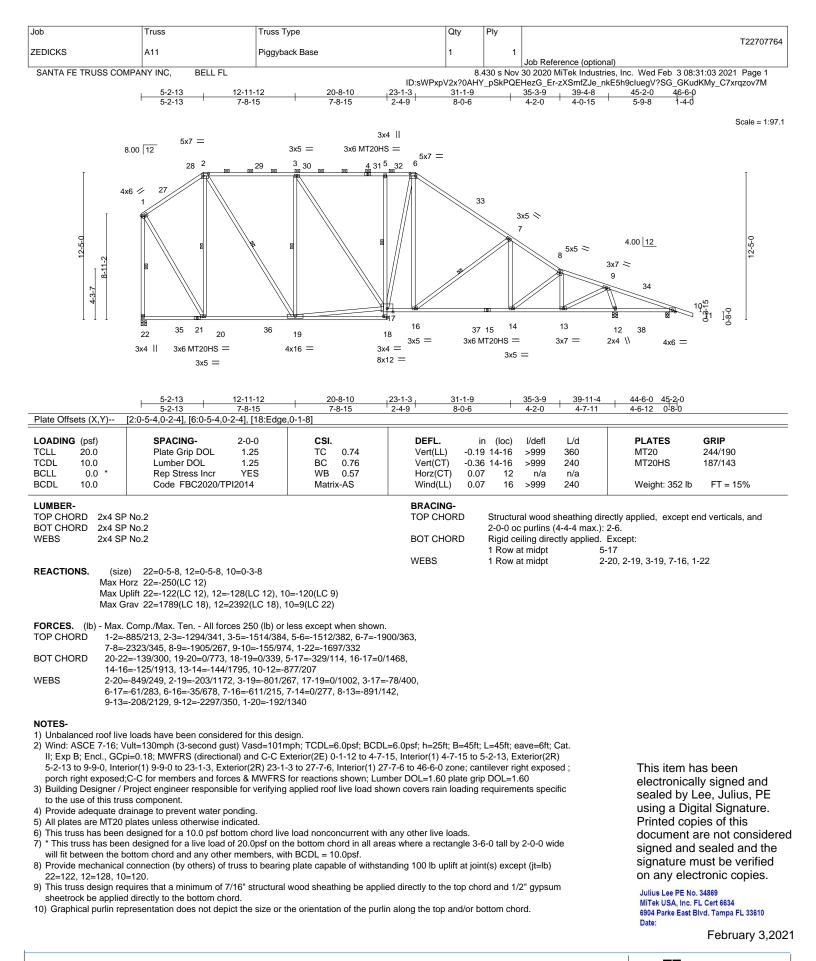
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27, 14 except (jt=lb) 17=131.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 February 3,2021



Date:


Julius Lee PE No. 34869

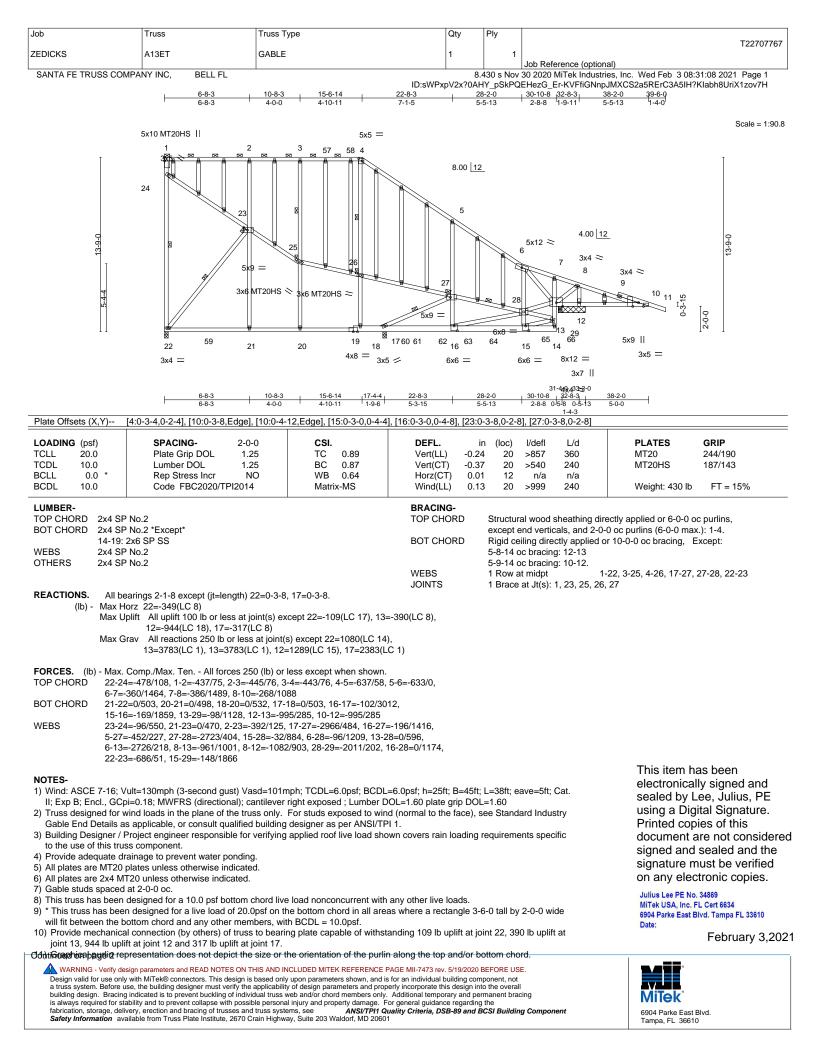
MiTek USA, Inc. FL Cert 6634

6904 Parke East Blvd. Tampa FL 33610

6904 Parke East Blvd Tampa, FL 36610

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK° 6904 Parke East Blvd. Tampa, FL 36610


DOXS 12 Pageback Base 1 2 Pageback Base 1 P	Job	Truss	Truss Type	Qty	Ply				
Extra the transfer of t	ZEDICKS			1	-				T22707765
The product of the pr			33,744		130 s Nov			wed Feb 3.08	31:05 2021 Page 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SANTA FE TRUSS CO		40.0.40	ID:sWPxpV2x?0AHY_p	SkPQEH	ezG_Er-vwa	N4EKuWO_yL?	J?PJg8aQYb24?R	
<pre>wid =</pre>) <u>39-6-0</u> 1-4-0	
<pre> ## =</pre>			2x4						Scale = 1:83.6
Verse Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Provention Pro		4x6 = 3x4 =	3x6 MT20HS =						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}$	5.7.7 139.0			25 3x5 ×		7 ^{5x5} ≈	3x5 ≒ 8	26	13.9.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				13		12			0-0-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		× 8x8 = 28						lų l
Image: transmission of the state of the		17 16					\		
Bale Cless (XY)- [5:0-2:8:0-1:3], [1:3:0-3:0,0-3:4], [1:4:0-2:8:0-3:0] OADIMG (psf) CL SPACINO- 10:0 C:0-2:8:0-1:3], [1:3:0-3:0,0-3:4], [1:4:0-2:8:0-3:0] Werl(L) 0:0:0 Verl(L)		3x4 = 4x8 =	2x4						
Bale Cless (XY)- [5:0-2:8:0-1:3], [1:3:0-3:0,0-3:4], [1:4:0-2:8:0-3:0] OADIMG (psf) CL SPACINO- 10:0 C:0-2:8:0-1:3], [1:3:0-3:0,0-3:4], [1:4:0-2:8:0-3:0] Werl(L) 0:0:0 Verl(L)								38-2-0	
CLL 20.0 Plate Grip DOL 1.25 TC 0.83 Ver(L1) 0.22 13-14 .989 360 MT20H 244/190 CGL 0.0 Lumber DOL 1.25 BC 0.82 Ver(C1) 0.04 113-14 .989 360 MT20H 197/143 CGL 0.0 Code FBC2020TPI2014 Matrix-AS Wind(LL) 0.05 13-14 .989 240 Weight: 28e Ib FT = 15% UMBER- OP CHORD 2x4 SP No.2 TC = 0.83 Wind(LL) 0.05 13-14 .999 240 Weight: 28e Ib FT = 15% UNBER- OP CHORD 2x4 SP No.2 TC = 0.83 Structural wood sheathing directly applied, except end verticals, and 2-0-0 ac pulling (54-8 max); 1:5 50 CHORD 4:6 2-16, 6-14 2-0-0 ac pulling (54-8 max); 1:5 50 FT = 15% WEBS 1:7 2:8 avail 1/2 pis 1:1 1:6 2-16, 6-14 2:6 avail 1/2 pis 1:1 2:0 ac pulling (54-8 max); 1:5 1:6 2-16, 6-14 2:7 1:7 1:6 2-16, 6-14 2:7 1:7 1:6 2-16, 6-14 2:7 1:7 1:6 2-16, 6-14 2:7 1:7 1:6 2-16, 6-14 2:7 1:7 1:6 2-16, 6-14 2:7 1:7 1	Plate Offsets (X,Y)			0-1-	~				
CDL 10.0 Lumber DOL 1.25 BC 0.02 Ver(CT) -0.41 1.34 - s67 240 MT20HS 187/143 VEDL 10.0 Code FBC2020/TPI2014 Matrix-AS Wind(LL) 0.05 13.14 -s969 240 Weight: 296 lb FT = 15% UMBER- OP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0 do c puring (G-4 max): 1-5. BOT CHORD Structural wood sheathing directly applied, except end verticals, and 2-0 do c puring (G-4 max): 1-5. VEES 2.4 SP No.2 BOT CHORD Structural wood sheathing directly applied, except end verticals, and 2-0 do c puring (G-4 max): 1-5. BOT CHORD Structural wood sheathing directly applied, except and 2-0 do c puring (G-4 max): 1-5. VEES (siza) 17-0-34, 11-0-64, 9-0-3-8 BOT CHORD Structural wood sheathing directly applied, except and 1-16, 2-16, 6-14 2-16, 6-14 VEES (siza) 17-0-34, 11-0-64, 9-0-3-8 Max Horz 17-349(LC 12) Haw at midpt 4-14 WEES (siza) 17-0-34, 11-0-64, 9-0-3-8 Max Horz 17-349(R, 6-14-24/14, 2-4-102/148), 4-5-102/174 2-0-02/174 VEES (siza) 17-0-34, 11-0-64, 9-0-9-36 Max Horz 17-349(R, 6-14-24/147, 2-4-102/148), 4-5-102/174 5-0-102/174 VID CHORD 6-14-724/20, 6-13-04/	LOADING (psf)				n (loc)				
CLL 0.0* Rep Stress Incr YES WB 0.08 Horz(CT) 0.06 11 n/a n/a Weight 296 lb FT = 15% UMBER. OP CHORD 2x4 SP No.2 Structural wood sheathing directly applied, except end verticals, and 2x-0-oc purine (64-8 max). 1-5. BRACING- TOP CHORD TOP CHORD Rep Stress Incr YEB TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2x-0-oc purine (64-8 max). 1-5. VEBS 2x4 SP No.2 Structural wood sheathing directly applied. Except 1 <td></td> <td></td> <td></td> <td>()</td> <td></td> <td></td> <td></td> <td></td> <td></td>				()					
UMBER- OP CHORD 2x4 SP No.2 OP CHORD 2x4 SP No.2 OP CHORD 2x4 SP No.2 VEBS 1170-349(LC 12) Max Upitit T72-158(LC 12), 11=43(LC 12), 9=-129(LC 12) Max Care 172-1615(LC 18), 11=199(LC 18), 9=-92(LC 12) Max Upitit T72-158(LC 12), 11=43(LC 12), 9=-129(LC 12) Max Upitit T72-158(LC 12), 11=43(LC 12), 11=43(H2, 12), 9=-129(LC 12) Max Upitit T72-158(LC 12), 11=43(LC 12), 9=-92(LC 12) OP CHORD 161-172-17423, 13-14=0/1421, 12-13=-24/153, 45=-1022/17161, 6=-1217/161, 6=-1217/151, 1=-639(12), 21=-100 OP CHORD 161-172-157/423, 13-14=0/1421, 12-13=-24/153, 15-14=0/140, 6 01 CHORD 161-172-157/423, 13-14=0/1421, 12-13=-24/153, 15-14=0/140, 6 01 CHORD 161-172-157/423, 13-14=0/1421, 12-13=-24/153, 15-14=0/140, 6 01 CHORD 161-172-157/423, 14-16-1706, 25-14-120 3-11-3 17 EFS 17/16 17 His trans has been designed for a 100 pd b otom chording aplied roof live load shown covers rain loading requirements specific 10 His trus design requ	BCLL 0.0 *	Rep Stress Incr YE	S WB 0.89	Horz(CT) 0.06	6 11	n/a	n/a		
OP CHORD 244 SP No.2 TOP CHORD 244 SP No.2 Structural wood sheathing directly applied, except end verticals, and 20-00 purins (54-48 max); 1-5. VEBS 244 SP No.2 / Except* BOT CHORD Rigid ceiling directly applied, except end verticals, and 20-00 purins (54-48 max); 1-5. VEBS 244 SP No.2 / Except* BOT CHORD Rigid ceiling directly applied, except end verticals, and 20-00 purins (54-48 max); 1-5. VEBS 17-0-3-8, 11=0-5-8, 9=0-3-8 Max that: 17-3-340[LC 12), 11=43(LC 12), 9=-128(LC 12) Max that: 17-3-348/345, 1-2=674/147, 2-4=-1028/183, 9-1-287(LC 12) Max Sam 17-155(LC 18), 11=1898(LC 18), 9=82(LC 1) ORCESS. (b) - Max. Comp.Max. Ten All forces 250 (b) or less except when shown. OP CHORD OP CHORD 1-16=-237/130, 2-16=-1080/256, 14-16-00/786, 2-14=-7297/75, 5-14=-0406, 6-14=-724/20, 6-13-00/252, 1-12-03-27175, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/786, 2-14=-7397/75, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/786, 2-14=-7397/75, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/786, 2-14=-7397/75, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/786, 2-14=-7397/75, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/786, 2-14=-7397/75, 5-14=-0406, 6-14=-724/20, 6-13-00/256, 14-16-00/26, 6-14=00/26, 6-14	BCDL 10.0		Matrix-AS	VVInd(LL) 0.05	5 13-14	>999	240	vveight: 296 lb	FT = 15%
 (EACTIONS. (size) 17=0-38, 11=0-58, 9=0-38 Max Horz 17=-349(LC 12), Max Carv 17=1515(LC 12), 11=043(LC 12), 9=-129(LC 12) Max Grav 17=1515(LC 18), 11=043(LC 12), 9=-129(LC 12) Max Grav 17=1515(LC 18), 11=043(LC 12), 9=-129(LC 12) Max Grav 17=1515(LC 18), 11=043(LC 12), 9=-129(LC 12) (DF CHORD 1-17=-13744/345, 1-2=-674/147, 2-4=-1022/181, 5-6=-1217/161, 6-7=1801/151, 7-8=-1597/139, 8-9=82/773 (DF CHORD 1-17=-1574/208, 6-13=0/426, 7-12=-658/03, 8-12=-639/139 (VEBS 1-16=-297/1350, 2-16=-1086/256, 14-16=0/796, 2-14=-79775, 5-14=0/406, 6-14=-724/208, 6-13=0/426, 7-12=-658/03, 8-12=-621/145, 8-11=-1899/192 (DFES- 0) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=38ft; eave=5ft; Cat. (Fi Strp 8: End, GCpie-01 (8; WMFRS (directional) and C-C. Exterior(2E) 0-112 to 3-11-9, Interior(1) 3-11-9 to 16-1-3, Exterior(2R) 16-1-10, Interior(1) 19-11-0 to 39-6-0 zone; cantilever right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Depist grap DOL=16.00 (Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. (Provide mechanical connection (by others) of trus to bearing plate capable of withstanding 100 lb upilf at piont(s) 11 except (it=lb) 17-158, 9=129. (This truss has been designed for a 10.0 pst of the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psd. (Provide mechanical connection (by others) of trus to bearing plate capable of withstanding 100 lb upilf at piont(s) 11 except (it=lb) 17-158, 9=129. (This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and any other members, with BCDL = 10.0 psd. (Provide mechanical connection (by others) of tr	TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.2 P No.2 *Except*		TOP CHORD BOT CHORD	2-0-0 oc Rigid ce 1 Row a 1 Row a	c purlins (5-4 eiling directly at midpt at midpt	4-8 max.): 1-5. / applied. Exce 4-14 1-16, 2	ept:	and verticals, and
6-71801/151, 7-81597/130, 8-9=-82773 IOT CHORD 16-17=-157/429, 13-14=0/1421, 12-13=-24/1503, 9-11=-689/139 VEBS 1-16=-297/1350, 2-16=-1086/256, 14-16=0/796, 2-14=-79775, 5-14=0/406, 6-14=-724/208, 6-13=0/426, 7-12=-658/93, 8-12=-62/1745, 8-11=-1899/192 IOTES-) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=38ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-11-9, Interior(1) 3-11-9 to 16-1-3, Exterior(2R) 16-1-3 to 19-11-0, Interior(1) 19-11-0 to 39-6-0 zone; cantilever right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=16 00 plate grip DDL=16.0) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.) Provide adquate drainage to prevent water ponding.) All plates are MT20 plates unless otherwise indicated.) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (it=lb) 17a-158, 9=129.) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2' gypsum sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee FE No. 34890 MTev USA, Inc. FC Not 6634 6904 Parke East Blvd. Tampa FL 33810 Date: February 3,2	Max H Max L Max C FORCES. (Ib) - Max.	łorz 17=-349(LC 12) Jplift 17=-158(LC 12), 11=-43(LC Grav 17=1515(LC 18), 11=1989(. Comp./Max. Ten All forces 25	: 12), 9=-129(LC 12) LC 18), 9=82(LC 1) 0 (Ib) or less except when shown.		2 1.003	at 1/3 pts	1-17		
6-14=-724/208, 6-13=0/426, 7-12=-658/93, 8-12=-62/1745, 8-11=-1899/192 IOTES.) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=38ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-11-9, Interior(1) 3-11-9 to 16-1-3, Exterior(2R) 16-1-3 to 19-11-0, Interior(1) 19-11-0 to 39-6-0 zone; cantilever right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.) Provide adequate drainage to prevent water ponding.) All plates are MT20 plates unless otherwise indicated.) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.) "This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and ny other members, with BCDL = 1.0.0 psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (It=Ib) 17=158, 9=129.) This truss design requires that a minimum of 7/16* structural wood sheathing be applied directly to the top chord and 1/2* gypsum sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34686 WTek USA, Inc. PL Cert 6824 6004 Parke East Blvd. Tampa FL 33610 Date: February 3,2	6-7= BOT CHORD 16-1	-1801/151, 7-8=-1597/139, 8-9= 7=-157/429, 13-14=0/1421, 12-1	82/773 3=-24/1503, 9-11=-689/139						
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=38ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-11-9. Interior(1) 3-11-9 to 16-1-3, Exterior(2R) 16-1-3 to 19-11-0. Interior(1) 19-11-0 to 39-6-0 zone; cantilever right exposed c.C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a live load 70.0 psf bottom chord live load nonconcurrent with any other live loads. ' This truss has been designed for a live load 70.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17–158, 9=129. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Jeraphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34889 MITRE VS, Inc. FL Cert 6634 6904 Parke East Bivd. Tampa FL 33810 Date: February 3,2 									
) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=38ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-11-9, Interior(1) 3-11-9 to 16-1-3, Exterior(2R) (b) Holding Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.) Provide adequate drainage to prevent water ponding.) All plates are MT20 plates unless otherwise indicated.) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17=158, 9=129.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.) Brite USA, Inc. FL Cart 6634 6804 Parke East Blvd. Tampa FL 33610 Date: 		· -	,						
 building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17=158, 9=129. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6604 Parke East Blvd. Tampa FL 33610 Date: February 3,2 	1) Wind: ASCE 7-16; ^v II; Exp B; Encl., GC 16-1-3 to 19-11-0, I	pi=0.18; MWFRS (directional) ar nterior(1) 19-11-0 to 39-6-0 zone	d C-C Exterior(2E) 0-1-12 to 3-11- ; cantilever right exposed ; porch r	9, Interior(1) 3-11-9 to 1	16-1-3, E	xterior(2R)	t.		
) Provide adequate drainage to prevent water ponding.) All plates are MT20 plates unless otherwise indicated.) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: 	2) Building Designer /	Project engineer responsible for		wn covers rain loading r	requireme	ents specific		This item h	as been
 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17=158, 9=129. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6804 Parke East Blvd. Tampa FL 33610 Date:].						
) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17=158, 9=129.) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Bivd. Tampa FL 33610 Date: February 3,2	4) All plates are MT20	plates unless otherwise indicate	d.	any other live loads					
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 17=158, 9=129. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: 	5) * This truss has been been been been been been been bee	en designed for a live load of 20.0	psf on the bottom chord in all area		6-0 tall by	2-0-0 wide			
sheetrock be applied directly to the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Julius Lee PE No. 34889 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: February 3,2	 Provide mechanica 17=158, 9=129. 	l connection (by others) of truss t	o bearing plate capable of withstar	. ,	.,	,		signed and	sealed and the
Date: February 3,2	sheetrock be applie	d directly to the bottom chord.	c					Julius Lee PE No MiTek USA, Inc.	o. 34869 FL Cert 6634
									Blvd. Tampa FL 33610 February 3,20
									• ·

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss	Truss Type	Qty	Ply		
ZEDICKS	A13	Piggyback Base	1	1		T22707766
SANTA FE TRUSS CO	MPANY INC, BELL FL		8.4	 430 s Nov	Job Reference (optional) 30 2020 MiTek Industries, I	Inc. Wed Feb 3 08:31:06 2021 Page 1
	7-8-3	13-8-10 16-1-3 22		IY_pSkPQ		y9uBz0BN7e4IPULXqbiPhAMbS9zov7J
	7-8-3		6-1-3		3-10-14 5-11-1	
		2x4				Scale = 1:83.6
	4x6 = 3x4 = 1	5×5 —				
5.7.7 13.9.0		3 25 4 26 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.00 12 27 3x5 × 6 14 5x7 =		$7 5x5 \approx 4.00 \boxed{12}$ $3x5 \approx 8$ 8 $13 1211$ $3x5 = 3x4 $	28 9 100 0 0 0 0 0 0 0 0 0
Plate Offsets (X,Y)	3x4 = 4x8 =	2x4 <u>13-8-10 22-2-6</u> <u>6-0-7 8-5-11</u>			<u> 33-1-1 33-6-0 37-7</u> 4-9-8 0-4-14 4-1-	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code FBC2020/TPI201-	-0 CSI. 25 TC 0.85 25 BC 0.83 25 WB 0.92	Vert(LL) -0.23 Vert(CT) -0.42 Horz(CT) 0.07	n (loc) 3 14-15 2 14-15 7 11 5 14-15	l/defl L/d >999 360 >942 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 296 lb FT = 15%
WEBS 2x4 SF 1-18: 2 REACTIONS. (siz Max H Max L	P No.2 P No.2 *Except* 2x4 SP No.1 ze) 18=0-3-8, 11=4-9-8, 9=4-9 Horz 18=-349(LC 12) Jplift 18=-159(LC 12), 11=-34(LC	C 12), 9=-73(LC 9), 9=-2(LC 1)	BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc Rigid ce 1 Row a 1 Row a	c purlins (5-3-11 max.): 1-5 eiling directly applied. Exc at midpt 4-15	
FORCES. (lb) - Max. TOP CHORD 1-18 6-7= BOT CHORD 17-1 9-11 WEBS 1-17	8=-1371/346, 1-2=-687/148, 2-4= -1886/155, 7-8=-1810/152, 8-9= 8=-157/429, 14-15=0/1492, 13-7 =-894/149 '=-298/1378, 2-17=-1114/258, 15	50 (lb) or less except when shown. -1056/184, 4-5=-1059/182, 5-6=-1:	246/165, 2=-19/387, /421,			
NOTES- 1) Wind: ASCE 7-16; Y II; Exp B; Encl., GC 16-1-3 to 19-11-0, I plate grip DOL=1.60 2) Building Designer / to the use of this tru 3) Provide adequate d 4) All plates are MT200 5) This truss has been 6) * This truss has been will fit between the I 7) Provide mechanical (jt=Ib) 18=159. 8) This truss design re sheetrock be applie	Vult=130mph (3-second gust) Va cpi=0.18; MWFRS (directional) an interior(1) 19-11-0 to 39-6-0 zone 0 Project engineer responsible for uss component. drainage to prevent water pondin 0 plates unless otherwise indicate a designed for a 10.0 psf bottom en designed for a live load of 20. bottom chord and any other mer I connection (by others) of truss equires that a minimum of 7/16" se ad directly to the bottom chord.	asd=101mph; TCDL=6.0psf; BCDL nd C-C Exterior(2E) 0-1-12 to 3-11 e;C-C for members and forces & M verifying applied roof live load sho g. ad. chord live load nonconcurrent with 0psf on the bottom chord in all area	=6.0psf; h=25ft; B=45ft; -9, Interior(1) 3-11-9 to 1 IWFRS for reactions sho own covers rain loading r any other live loads. as where a rectangle 3-6 unding 100 lb uplift at join ed directly to the top cho	16-1-3, Ex own; Lumb 6-0 tall by ht(s) 11, 9 ord and 1/2	xterior(2R) ber DOL=1.60 ents specific / 2-0-0 wide 0, 9 except /2" gypsum	This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies. Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:
						February 3,202
WARNING - Verify de Design valid for use on	esign parameters and READ NOTES ON [*]	THIS AND INCLUDED MITEK REFERENCE F based only upon parameters shown, and is apolicability of design parameters and prop	PAGE MII-7473 rev. 5/19/2020 E s for an individual building com	3EFORE US		MI

6904 Parke East Blvd. Tampa, FL 36610

[Job	Truss	Truss Type	Qty	Ply	T00707777		
	ZEDICKS	A13ET	GABLE	1	1	T22707767		
						Job Reference (optional)		
	SANTA FE TRUSS COMPAI	NY INC, BELL FL	8.430 s Nov 30 2020 MiTek Industries, Inc. Wed Feb 3 08:31:08 2021 Page 2					
			ID:sWPx	ID:sWPxpV2x?0AHY_pSkPQEHezG_Er-KVFfiGNnpJMXCS2a5RErC3A5IH?Klabh8UriX1zov7H				

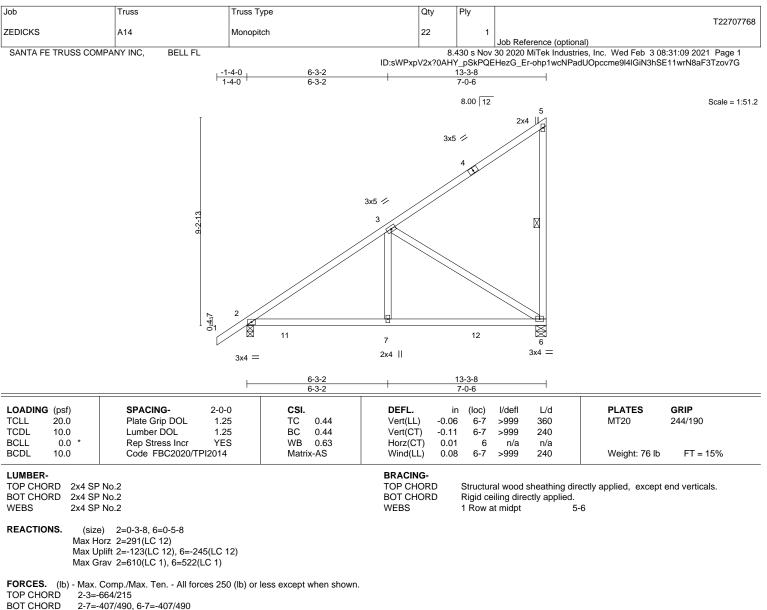
NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 347 lb down and 61 lb up at 17-9-4, 577 lb down and 63 lb up at 19-9-4, 577 lb down and 61 lb up at 21-9-4, 577 lb down and 58 lb up at 23-9-4, 577 lb down and 57 lb up at 25-9-4, and 577 lb down and 55 lb up at 27-9-4, and 534 lb down and 52 lb up at 29-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 6-11=-60, 14-22=-20, 13-54=-20

Concentrated Loads (lb)

Vert: 60=-347(F) 61=-577(F) 62=-577(F) 63=-577(F) 64=-577(F) 65=-577(F) 66=-534(F)

WEBS 3-7=-212/303. 3-6=-560/464

NOTES-


- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 13-1-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 123 lb uplift at joint 2 and 245 lb uplift at joint 6.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

				5-8-6		1	6-8-2					
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.39	Vert(LL)	-0.05	6-7	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.25	BC	0.37	Vert(CT)	-0.10	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	-0.00	8	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-AS	Wind(LL)	-0.00	6-7	>999	240	Weight: 87 lb	FT = 15%

BRACING-

WFBS

TOP CHORD

BOT CHORD

3x4 =

6

3x4 =

Rigid ceiling directly applied.

1 Row at midpt

Structural wood sheathing directly applied, except end verticals.

5-6.3-6

12-4-8

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

REACTIONS. (size) 8=0-4-12, 6=0-4-12 Max Horz 6=312(LC 12) Max Uplift 6=-139(LC 12) Max Grav 8=582(LC 1), 6=495(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-475/0, 2-8=-534/37 BOT CHORD 6-7=0/328

WFBS 3-6=-430/224, 2-7=0/295

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-12 to 1-7-4, Interior(1) 1-7-4 to 12-2-12 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

8

2x4

1

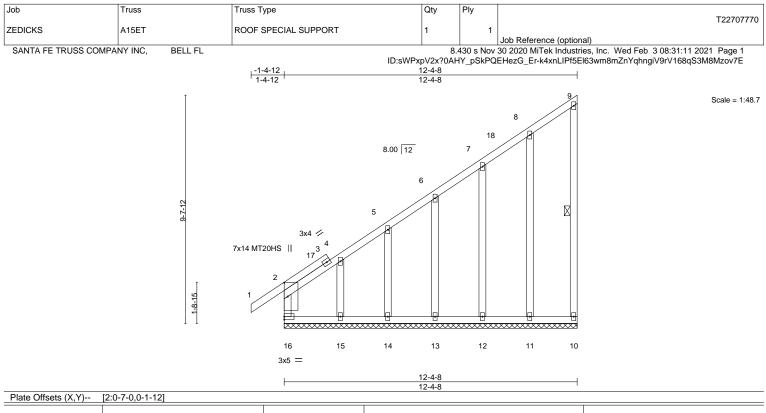
5-8-6

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 139 lb uplift at joint 6.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2020/TPI2014	CSI. TC 0.63 BC 0.37 WB 0.14 Matrix-R	DEFL. Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) -0.0	0 1 n/r 120	MT20 2	RIP 44/190 87/143 FT = 15%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	9 No.2 9 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o 1 Row at midpt 9	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	purlins,

REACTIONS. All bearings 12-4-8.

(lb) - Max Horz 16=295(LC 12)

Max Uplift All uplift 100 b or less at joint(s) 10, 16, 11, 12, 13 except 15=-218(LC 12) Max Grav All reactions 250 lb or less at joint(s) 10, 16, 11, 12, 13, 14, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-516/250, 4-5=-358/172, 5-6=-292/139, 2-16=-295/118

WEBS 4-15=-181/280

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-4-12 to 1-7-4, Exterior(2N) 1-7-4 to 12-2-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific

to the use of this truss component.

4) All plates are MT20 plates unless otherwise indicated.

5) All plates are 2x4 MT20 unless otherwise indicated.

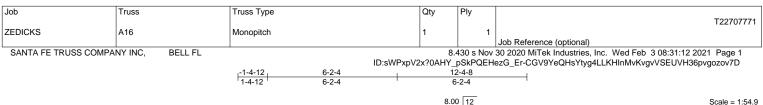
6) Gable requires continuous bottom chord bearing.

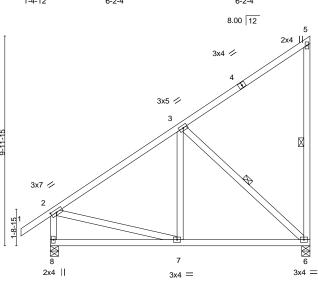
7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

8) Gable studs spaced at 2-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 16, 11, 12, 13 except (it=lb) 15=218.


This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/	d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.36	Vert(LL) -0.03 6-7 >999 36	0 MT20 244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.35	Vert(CT) -0.07 6-7 >999 24	0
BCLL 0.0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) -0.00 6 n/a n/	a
BCDL 10.0	Code FBC2020/TPI2014	Matrix-AS	Wind(LL) 0.00 7 >999 24	0 Weight: 87 lb FT = 15%

12-4-8

6-2-4

	DRACING-			
RD 2x4 SP No.2	TOP CHORD	Structural wood shea	thing directly applied, except end verticals.	
RD 2x4 SP No.2	BOT CHORD	Rigid ceiling directly a	applied.	
2x4 SP No.2	WEBS	1 Row at midpt	5-6, 3-6	
NS. (size) 8=0-4-12, 6=0-4-12				
7	D 2x4 SP No.2 2x4 SP No.2	D 2x4 SP No.2 TOP CHORD D 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS	D 2x4 SP No.2 TOP CHORD Structural wood shea D 2x4 SP No.2 BOT CHORD Rigid ceiling directly a 2x4 SP No.2 WEBS 1 Row at midpt	ID 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. ID 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. 2x4 SP No.2 WEBS 1 Row at midpt 5-6, 3-6 S. (size) 8=0-4-12, 6=0-4-12 Structural wood sheathing directly applied.

6-2-4

6-2-4

Max Horz 8=277(LC 12) Max Uplift 6=-137(LC 12)

Max Grav 8=582(LC 1), 6=493(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-465/0. 2-8=-526/41

BOT CHORD 7-8=-352/274, 6-7=-161/323

WFBS 3-6=-428/214

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-12 to 1-7-4, Interior(1) 1-7-4 to 12-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=137.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

8.00 12 5 2x4 ∦∕_ 3x5 ⁄ 3x5 💋 3 10-6-13 3x7 💋 1-8-15 X \boxtimes 9 7 6 ç 2x4 || 3x4 = 3x5 =

Plate Offsets (X,Y) [2:0-3-3,0-1-8]												
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	тс	0.41	Vert(LL)	-0.06	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.44	Vert(CT)	-0.10	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.20	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-AS	Wind(LL)	0.01	7	>999	240	Weight: 93 lb	FT = 15%

BRACING-

WFBS

TOP CHORD

BOT CHORD

13-2-12

6-7-6

6-7-6

6-7-6

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 8=0-4-12, 6=0-5-8 Max Horz 8=293(LC 12) Max Uplift 6=-144(LC 12) Max Grav 8=671(LC 17), 6=645(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-545/0, 2-8=-572/35

BOT CHORD 7-8=-361/295, 6-7=-160/436

WEBS 3-7=0/288, 3-6=-571/211, 2-7=0/315

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-12 to 1-7-4, Interior(1) 1-7-4 to 13-1-0 zone; C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

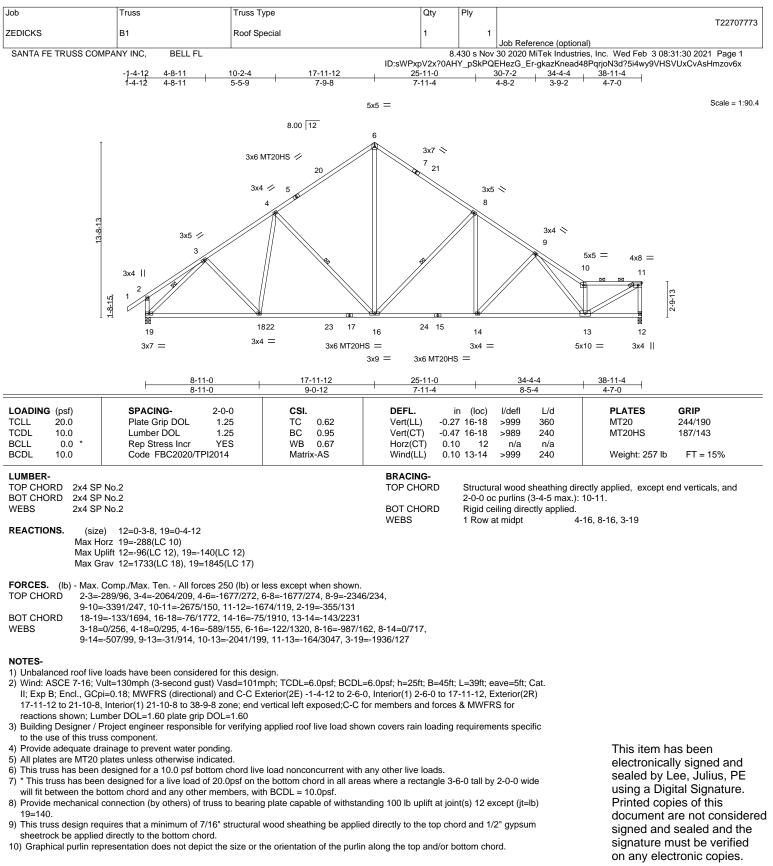
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=144.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

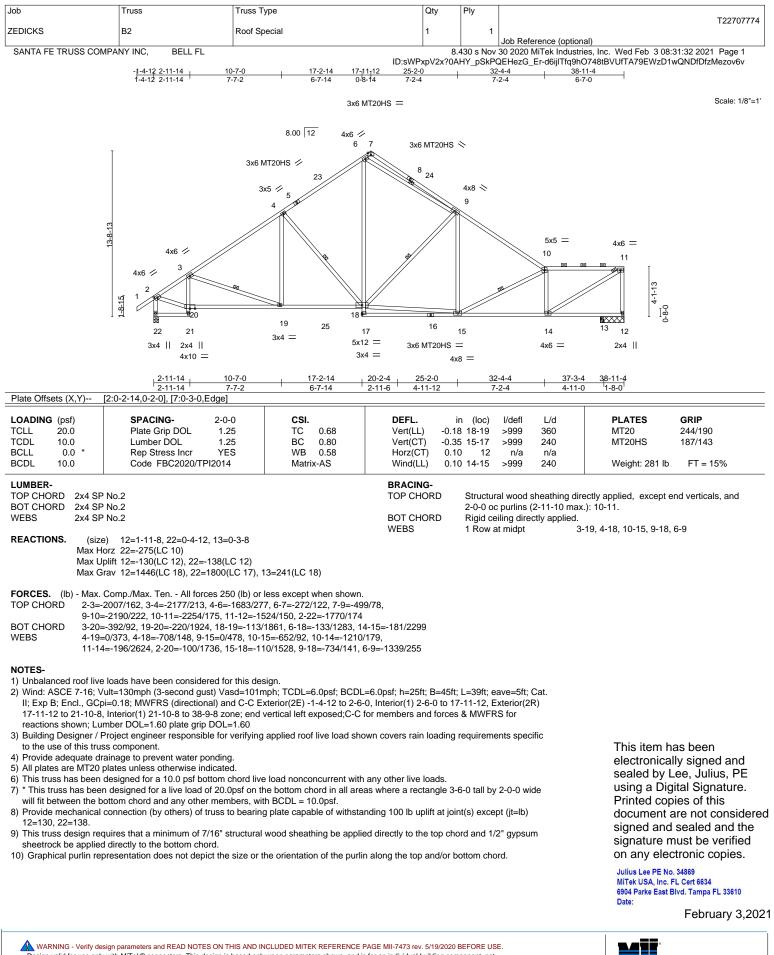


Structural wood sheathing directly applied, except end verticals.

5-6.3-6

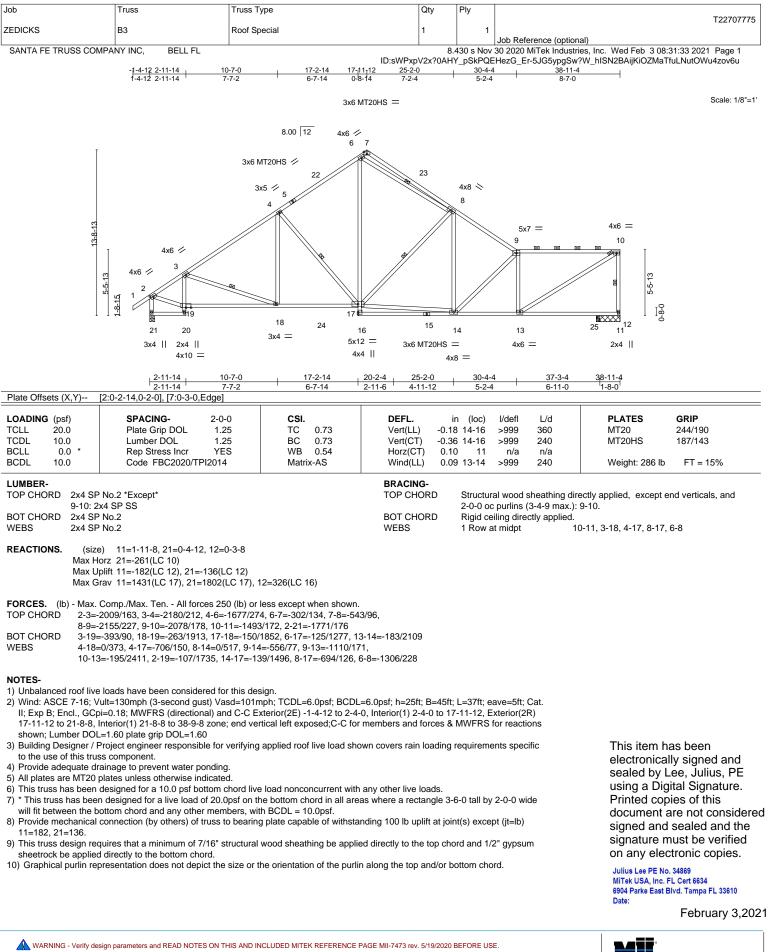
Rigid ceiling directly applied.

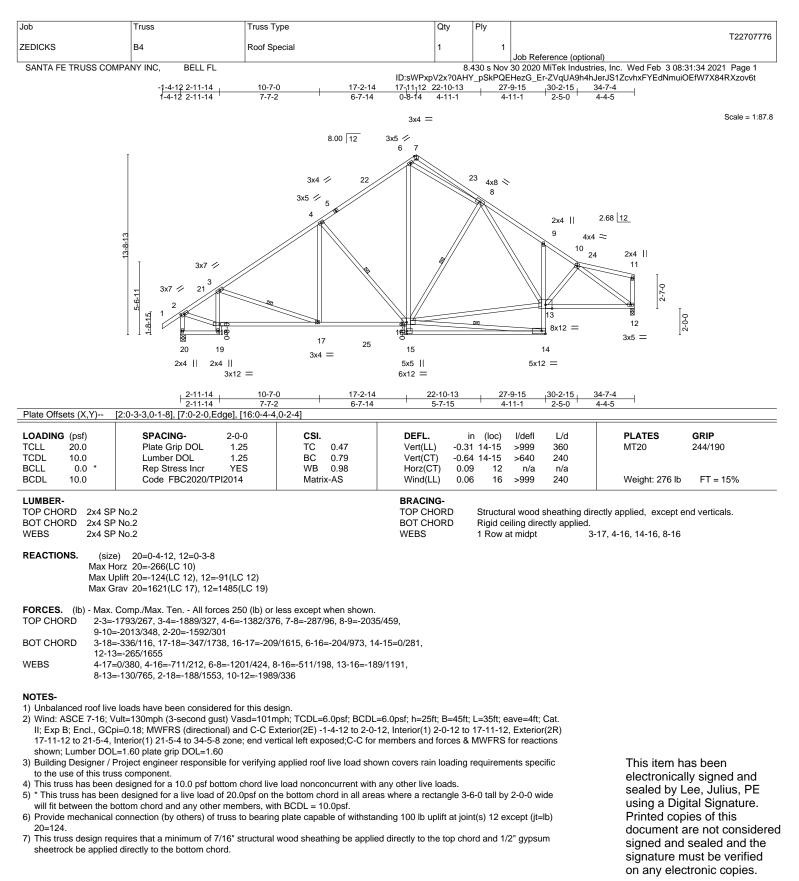
1 Row at midpt



Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

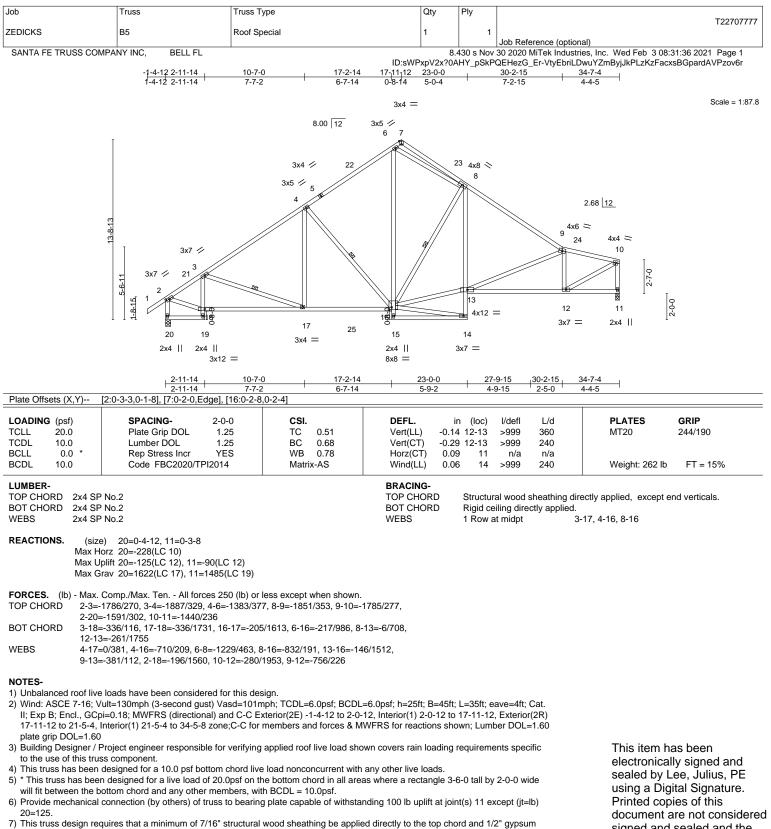
February 3,2021




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd. Tampa, FL 36610

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

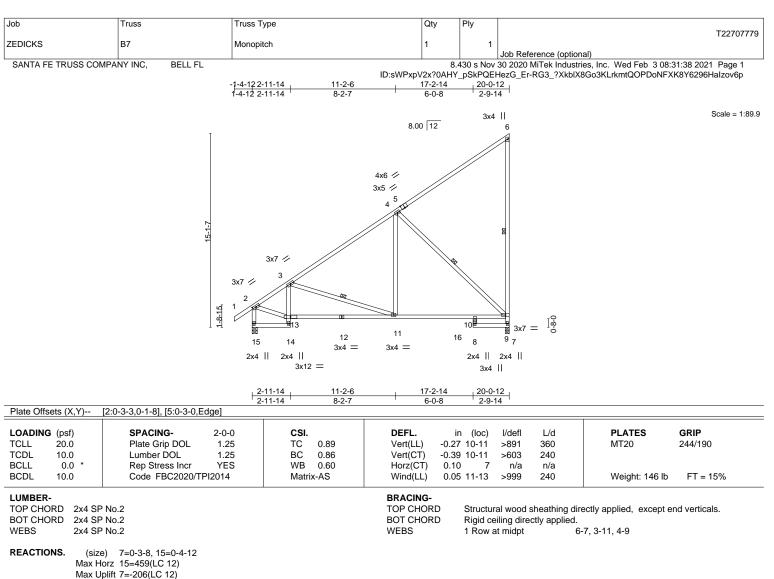
February 3,2021

sheetrock be applied directly to the bottom chord.

signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Max Grav 7=1039(LC 17), 15=985(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1021/0, 3-4=-860/0, 7-9=-961/227, 2-15=-952/7 TOP CHORD

BOT CHORD 14-15=-360/244, 11-13=-376/1018, 10-11=-153/697, 9-10=-192/645

WFBS 3-11=-346/234, 4-11=0/528, 4-9=-933/207, 2-13=0/884

NOTES-

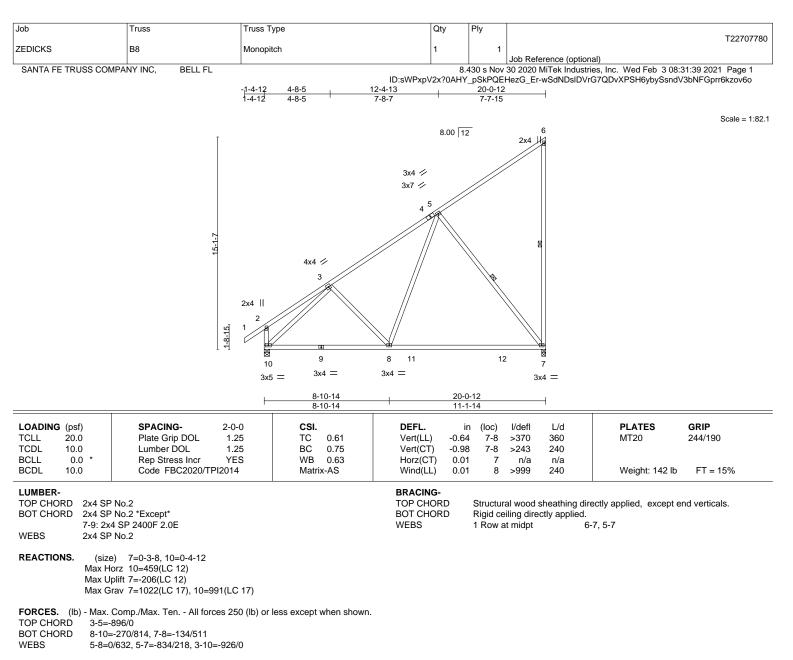
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-12 to 1-7-4, Interior(1) 1-7-4 to 19-11-0 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7 = 206.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-12 to 1-7-4, Interior(1) 1-7-4 to 19-11-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

7=206

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

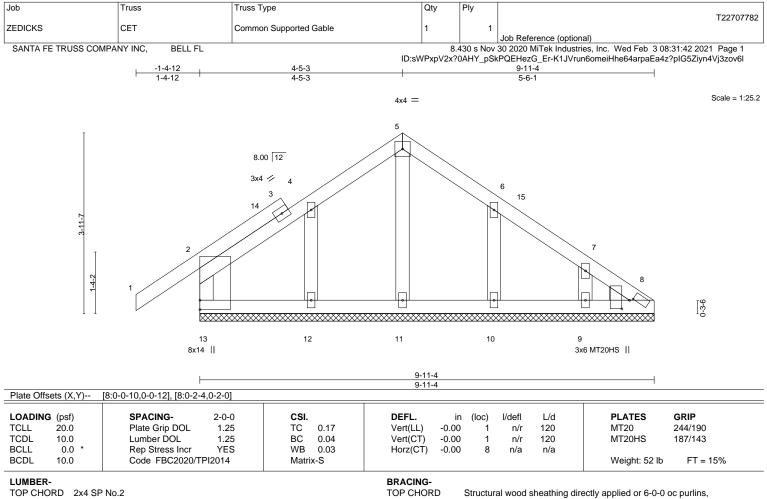
Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Job	Truss	Truss Type	Qty Ply		
ZEDICKS	BET	GABLE	1	1	T22707781
SANTA FE TRUSS	S COMPANY INC, BELL FL		8.430 s	Job Reference (optional) Nov 30 2020 MiTek Industries,	Inc. Wed Feb 3 08:31:41 2021 Page 1
	- <u>1-4-12 5-11-12</u> 1-4-12 5-11-12	11-11-12 17-11-12	23-11-12	30-2-12 34-0-10 36-	X3wWtKa201tPbLpXSHYk7KxAdzov6m 4-4_i 38-11-4_i
	1-4-12 5-11-12	6-0-0 6-0-0	6-0-0	6-3-0 3-9-15 2-3	3-9 2-7-0
			5x7 📎		Scale = 1:88.1
		8.00 12	5		
	Ī	//			
		5x5 🛩	₩ 4x6 ₩		
		4			
	E1-8- 8- E1 3 ∕			8	
				31	
			30	9	3x4 5x5 =
	2		The second	A A A A A A A A A A A A A A A A A A A	10 11
			3x6 MT20HS //		
	29 28 27 26	25 24 23 22 21	20 ¹⁸ 17 ⁵⁴	55 16	15 14 13 12
	3x4 53	5x5 =	10	3x4 =	
					38-11-4
Plate Offsets (X,Y	<u> </u>	9-3-11 3-3-15 + 11-11-12 + 17-11-12 2-8-1 6-0-0 , [6:0-3-0,Edge], [12:Edge,0-1-8], [$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
LOADING (psf) TCLL 20.0	Plate Grip DOL 1	0-0 CSI. .25 TC 0.29	DEFL. in (lo Vert(LL) -0.40 16-	-17 >445 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0	* Rep Stress Incr Y	.25 BC 0.57 ES WB 0.80	Vert(CT) -0.73 16- Horz(CT) 0.01	12 n/a n/a	MT20HS 187/143
BCDL 10.0	Code FBC2020/TPI20	4 Matrix-AS	Wind(LL) 0.18 16-	-17 >977 240	Weight: 335 lb FT = 15%
LUMBER- TOP CHORD 2	x4 SP SS		BRACING- TOP CHORD Stru	uctural wood sheathing directl	y applied, except end verticals, and
BOT CHORD 2	x4 SP SS *Except* 8-21: 2x4 SP No.1		2-0-	-0 oc purlins (6-0-0 max.): 10- id ceiling directly applied.	
WEBS 22	x4 SP No.2 *Except*		WEBS 1 R	Row at midpt 4-23,	5-20, 16-31
	-30: 2x4 SP No.1 x4 SP No.2		JOINTS 1 B	Brace at Jt(s): 11, 30, 31	
	All bearings 20-0-12 except (jt=leng		14=5-3-0,		
(lb) - N	15=5-3-0, 13=5-3-0, 19=0-3-8, 19= //ax Horz 29=-301(LC 10)				
Ν	Ax Uplift All uplift 100 lb or less at 26=-169(LC 12), 23=-155	joint(s) 29, 16, 28 except 12=-108 LC 12), 15=-842(LC 18), 13=-296			
N	12) Max Grav All reactions 250 lb or lea	ss at joint(s) 22, 24, 25, 27, 28, 13	except		
		C 21), 26=506(LC 17), 23=406(LC LC 1), 14=780(LC 17), 19=863(LC			
FORCES (lb) -	Max. Comp./Max. Ten All forces 2				
TOP CHORD	4-5=-238/398, 5-7=-210/394, 7-8=-2				
BOT CHORD	10-11=-260/92, 2-29=-272/133 17-19=-162/612, 16-17=-150/538, 1	5-16=-102/289, 14-15=-102/289, 1	13-14=-92/260,		
WEBS	12-13=-92/260 3-26=-397/246, 4-23=-362/221, 5-2		0/271,		_
	30-31=-521/204, 8-31=-389/183, 16	-31=-347/58			This item has been electronically signed and
NOTES- 1) Unbalanced ro	of live loads have been considered	or this design.			sealed by Lee, Julius, PE
	-16; Vult=130mph (3-second gust) V , GCpi=0.18; MWFRS (directional) a				using a Digital Signature. Printed copies of this
17-11-12 to 21	-10-8, Exterior(2N) 21-10-8 to 38-9- /n; Lumber DOL=1.60 plate grip DO	3 zone; end vertical left exposed;C			document are not considered
Truss designed	d for wind loads in the plane of the ti	uss only. For studs exposed to wi		tandard Industry	signed and sealed and the signature must be verified
Building Design	ails as applicable, or consult qualifient of the consult qualifient of the constant of the con			rements specific	on any electronic copies.
5) Provide adequa	iis truss component. ate drainage to prevent water pondi				Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634
<i>,</i> ,	IT20 plates unless otherwise indication 2x4 MT20 unless otherwise indicated				6904 Parke East Blvd. Tampa FL 33610 Date:
 B) Gable studs sp 9) This truss has 	baced at 2-0-0 oc. been designed for a 10.0 psf bottom	chord live load nonconcurrent wit	h anv other live loads.		February 3,2021
Continued on page	e 2		•		
Design valid for u	erify design parameters and READ NOTES ON use only with MiTek® connectors. This design before use, the building designer must verify th	is based only upon parameters shown, and	is for an individual building component	nt. not	
building design. I is always required	Bracing indicated is to prevent buckling of ind d for stability and to prevent collapse with pos	vidual truss web and/or chord members only sible personal injury and property damage.	 Additional temporary and permaner For general guidance regarding the 	nt bracing	MiTek °
fabrication, storage Safety Information	ge, delivery, erection and bracing of trusses a on available from Truss Plate Institute, 2670	nd truss systems, see ANSI/TPI1 (Crain Highway, Suite 203 Waldorf, MD 206	Quality Criteria, DSB-89 and BCSI B 01	Building Component	6904 Parke East Blvd. Tampa, FL 36610
					1

[Job	Truss	Truss Type	Qty	Ply	T00707704
	ZEDICKS	BET	GABLE	1	1	T22707781
						Job Reference (optional)
	SANTA FE TRUSS COMPAI	NY INC, BELL FL		8.4	130 s Nov	30 2020 MiTek Industries, Inc. Wed Feb 3 08:31:41 2021 Page 2
			ID:sWPxp'	V2x?0AH	_pSkPQE	HezG_Er-srl7eYmT1SWrfX3wWtKa201tPbLpXSHYk7KxAdzov6m

NOTES-


10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 29, 16, 28 except (jt=lb) 12=108, 26=169, 23=155, 15=842, 13=296, 19=133.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

 WEDGE
 2x4 SP No.2

Right: 2x4 SP No.2

REACTIONS. All bearings 9-11-4.

(lb) - Max Horz 13=76(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 13, 8, 12, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 13, 8, 11, 12, 10, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-4-12 to 1-7-4, Exterior(2N) 1-7-4 to 4-5-3, Corner(3R) 4-5-3 to 7-5-3, Exterior(2N) 7-5-3 to 9-9-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

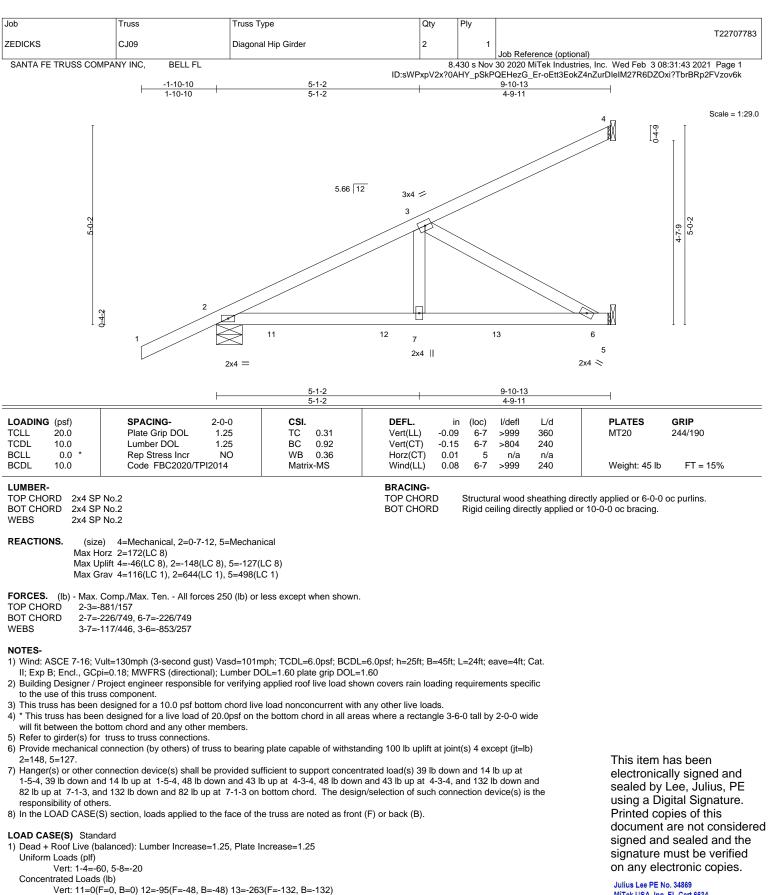
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 2x4 MT20 unless otherwise indicated.

7) Gable requires continuous bottom chord bearing.

8) Gable studs spaced at 2-0-0 oc.

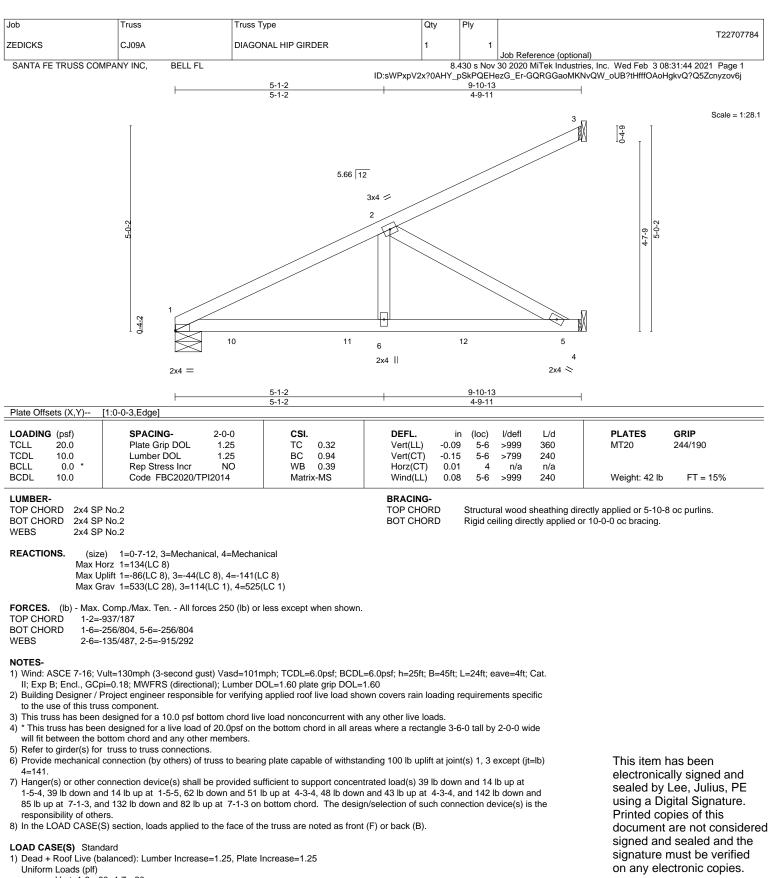
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 8, 12, 10, 9.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

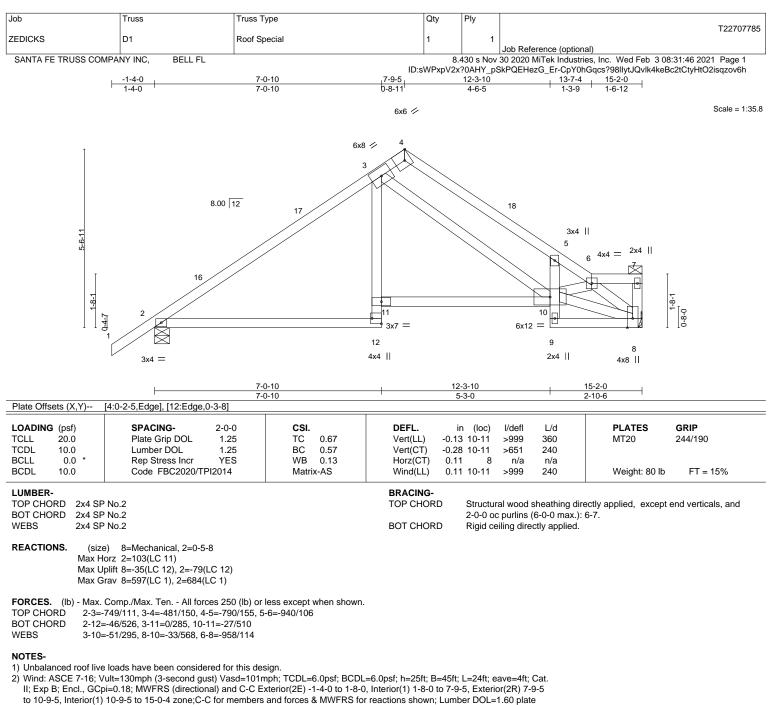
February 3,2021



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

6904 Parke East Blvd Tampa, FL 36610


Vert: 1-3=-60, 4-7=-20 Concentrated Loads (lb)

Vert: 10=0(F=0, B=0) 11=-110(F=-62, B=-48) 12=-274(F=-142, B=-132)

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

grip DOL=1.60
3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

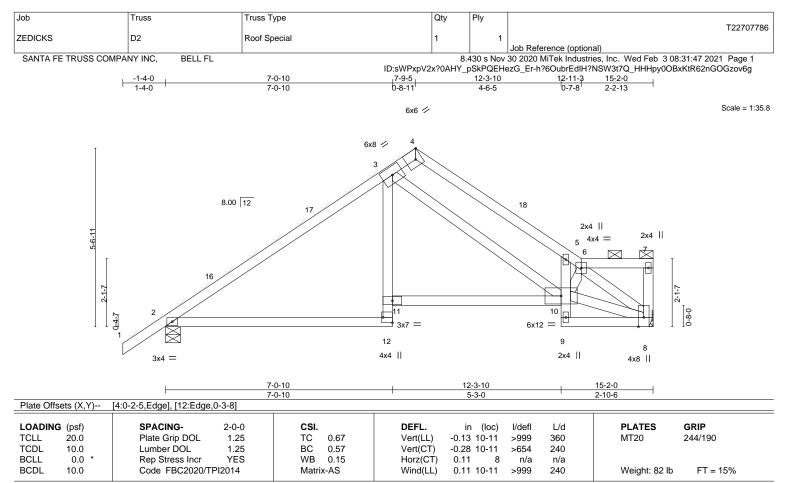
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-7. Rigid ceiling directly applied.
REACTIONS.	(size) 8=Mechanical, 2=0-5-8 Max Horz 2=99(LC 11)		

Max Holz 2=99(LC 11) Max Uplift 8=-37(LC 12), 2=-78(LC 12) Max Grav 8=597(LC 1), 2=684(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-749/109, 3-4=-480/148, 4-5=-787/150, 5-6=-990/108
- BOT CHORD 2-12=-58/526, 3-11=0/285, 10-11=-42/511, 5-10=0/416
- WEBS 3-10=-46/292, 8-10=-38/600, 6-8=-979/114

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 7-9-5, Exterior(2R) 7-9-5 to 10-9-5, Interior(1) 10-9-5 to 15-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate ario DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

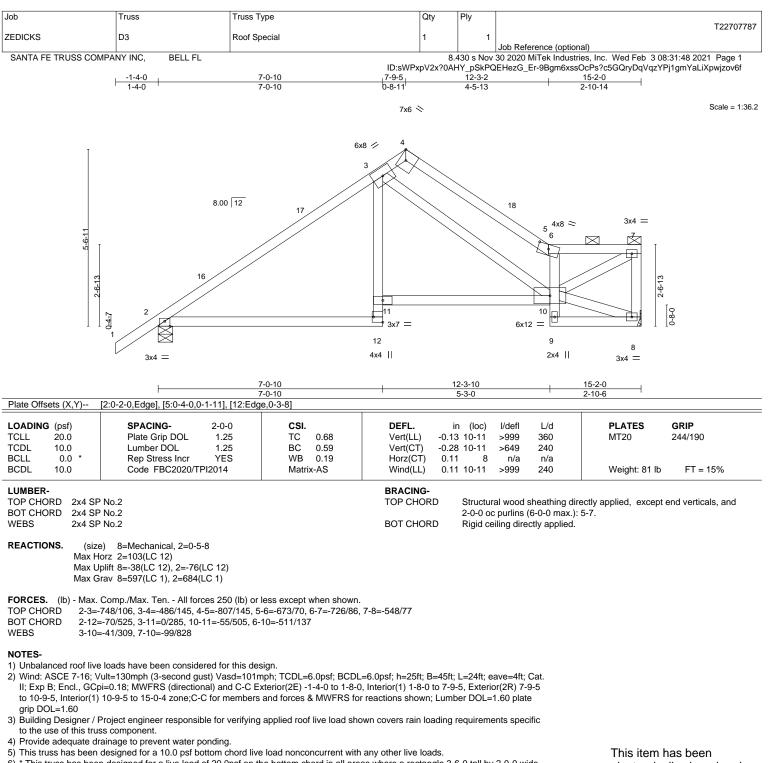
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

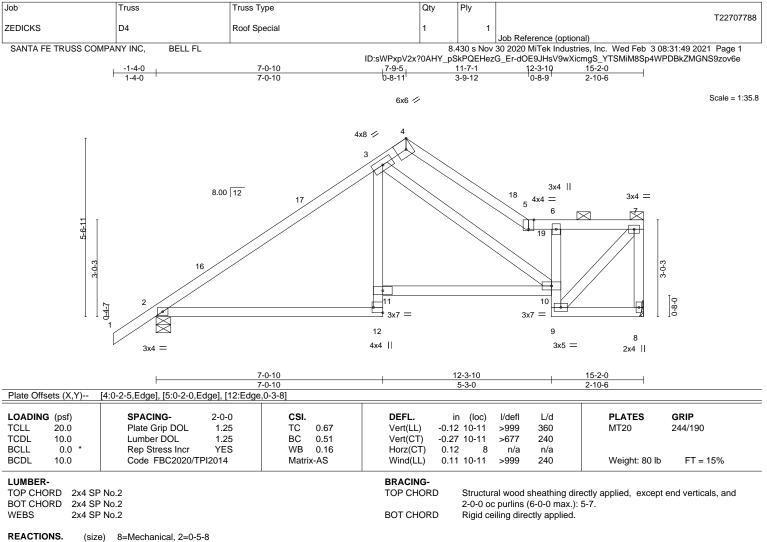
February 3,2021

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

I his item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

REACTIONS. (size) 8=Mechanical, 2=0-5-8 Max Horz 2=116(LC 12) Max Uplift 8=-41(LC 12), 2=-74(LC 12) Max Grav 8=597(LC 1), 2=684(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-752/102, 3-4=-469/139, 4-5=-719/131, 5-6=-620/72, 6-7=-499/69, 7-8=-604/92
- BOT CHORD 2-12=-82/530, 3-11=0/285, 10-11=-69/524, 9-10=-461/87, 6-10=-487/135
- WEBS 7-9=-99/714

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 7-9-5, Exterior(2R) 7-9-5 to 10-9-5, Interior(1) 10-9-5 to 15-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate ario DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

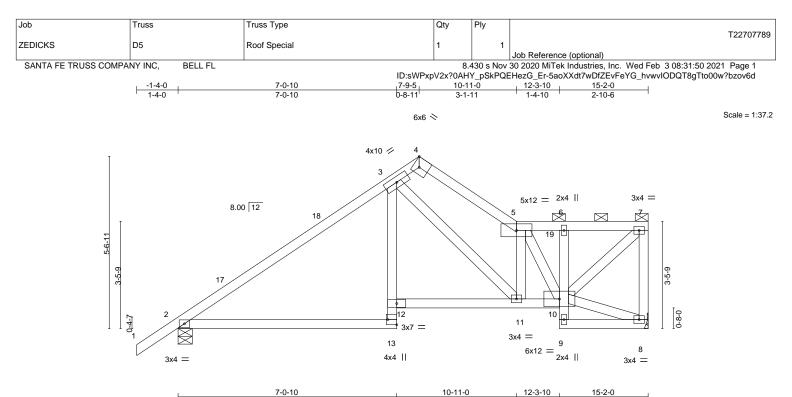
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

		1010	10 11		12 0 10	10 2 0	
	·	7-0-10	3-10-	6 '	1-4-10	2-10-6	
Plate Offsets (X,Y)	[4:Edge,0-3-8], [13:Edge,0-3-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.72 BC 0.53 WB 0.16	Vert(CT) -0. Horz(CT) 0.	.09 11-12 >9 .19 11-12 >9 .08 8	defl L/d 999 360 964 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-AS	Wind(LL) 0.	.08 11-12 >9	999 240	Weight: 90 lb	FT = 15%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2		BRACING- TOP CHORD BOT CHORD	2-0-0 oc pu	vood sheathing d ırlins (6-0-0 max.) g directly applied		end verticals, and
Max U	e) 8=Mechanical, 2=0-5-8 orz 2=129(LC 12) plift 8=-43(LC 12), 2=-72(LC 12) rav 8=597(LC 1), 2=684(LC 1)						
TOP CHORD 2-3=- BOT CHORD 2-13=	Comp./Max. Ten All forces 250 (lb) c 748/97, 3-4=-466/119, 4-5=-706/121, 5 -92/528, 11-12=-80/503, 10-11=-74/61 104/706	-6=-535/78, 6-7=-515/75, 7-	8=-559/94				
2) Wind: ASCE 7-16; V II; Exp B; Encl., GCp	e loads have been considered for this d /ult=130mph (3-second gust) Vasd=10 [°] oi=0.18; MWFRS (directional) and C-C) 10-11-0 to 15-0-4 zone;C-C for memi	mph; TCDL=6.0psf; BCDL= Exterior(2E) -1-4-0 to 1-8-0,	Interior(1) 1-8-0 to 7-	-9-5, Exterior(2	2E) 7-9-5		

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

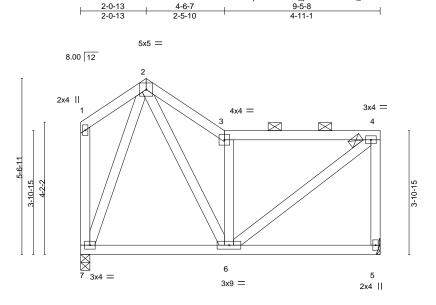
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

				-6-7 -6-7		9-5 4-1					
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.27	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC	0.18	Vert(CT)	-0.02	5-6	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code FBC2020/T	PI2014	Matri	x-AS	Wind(LL)	0.00	6	>999	240	Weight: 69 lb	FT = 15%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

WEBS 2x4 SP No.2 REACTIONS. (size) 5=Mechanical.7

CTIONS. (size) 5=Mechanical, 7=0-3-8 Max Horz 7=29(LC 11)

Max Uplift 5=-41(LC 9), 7=-26(LC 12) Max Grav 5=367(LC 1), 7=367(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-376/126, 3-4=-254/50, 4-5=-322/108

WEBS 2-6=-101/378, 3-6=-417/191, 4-6=-54/290, 2-7=-281/82

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 4-6-7, Interior(1) 4-6-7 to 9-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.

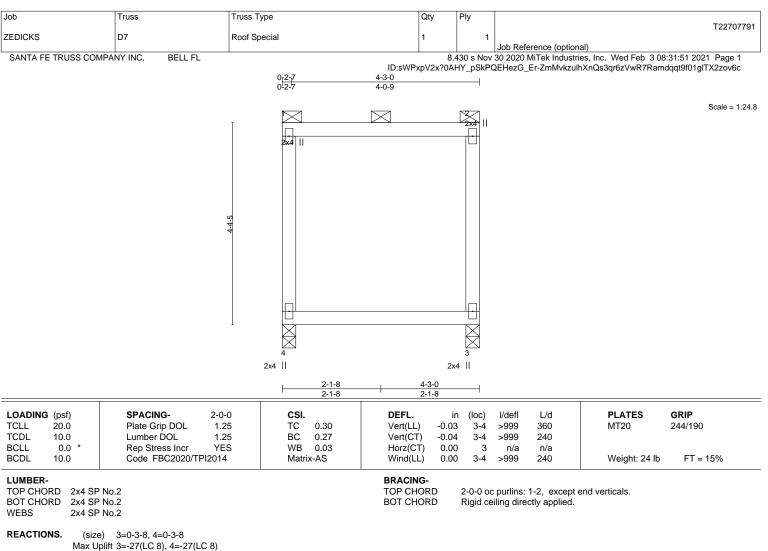
9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021


Scale = 1:36.4

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

Max Grav 3=199(LC 17), 4=199(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

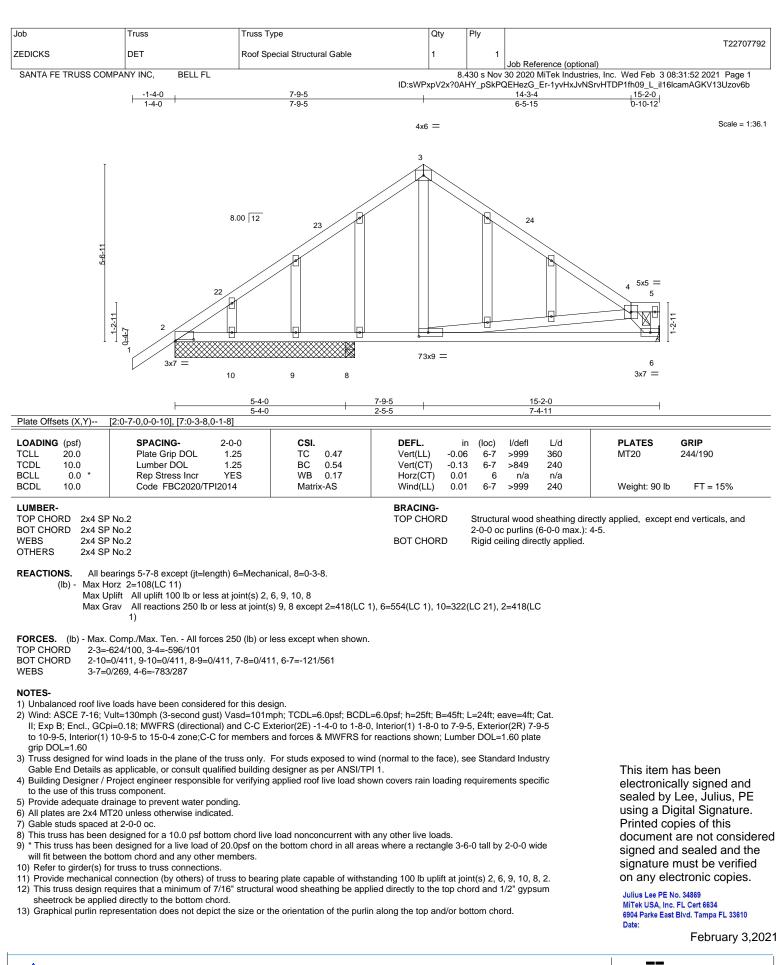
4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

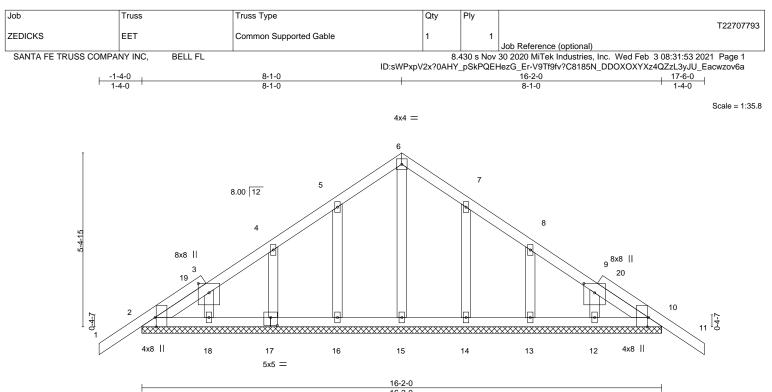
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

6904 Parke East Blvd Tampa, FL 36610

	16-2-0	
Plate Offsets (X,Y)	[2:0-3-8.Edge]. [3:0-3-8.0-4-0]. [9:0-3-8.0-4-0]. [10:0-3-8.Edge]. [17:0-2-8.0-3-0]	

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.12	Vert(LL)	-0.00	11	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	-0.01	11	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	10	n/a	n/a		
BCDL 10.0	Code FBC2020/TP	12014	Matrix	x-S						Weight: 90 lb	FT = 15%
LUMBER-					BRACING-						
TOP CHORD 2x4 SP	No.2				TOP CHOR	DS	Structur	al wood s	sheathing dire	ectly applied or 6-0-0	oc purlins.
BOT CHORD 2x4 SP	No.2				BOT CHOR	D	Riaid ce	ilina dire	ctly applied or	10-0-0 oc bracing.	

BOT CHORD 2x4 SP No 2 2x4 SP No 2 OTHERS

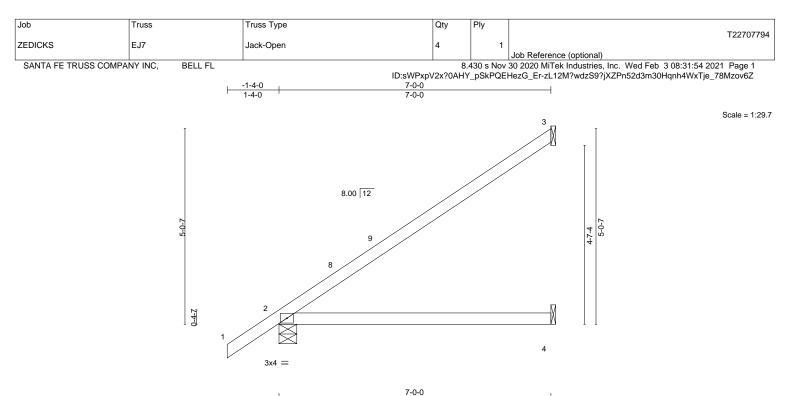
REACTIONS. All bearings 16-2-0.

(lb) -Max Horz 2=-118(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 16, 17, 18, 14, 13, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 10, 15, 16, 17, 18, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 8-1-0, Corner(3R) 8-1-0 to 11-1-0, Exterior(2N) 11-1-0 to 17-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 16, 17, 18, 14, 13, 12.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

						7-0-0						
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.60	Vert(LL)	-0.09	4-7	>936	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.51	Vert(CT)	-0.22	4-7	>386	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-AS	Wind(LL)	0.10	4-7	>868	240	Weight: 26 lb	FT = 15%

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-5-8, 4=Mechanical

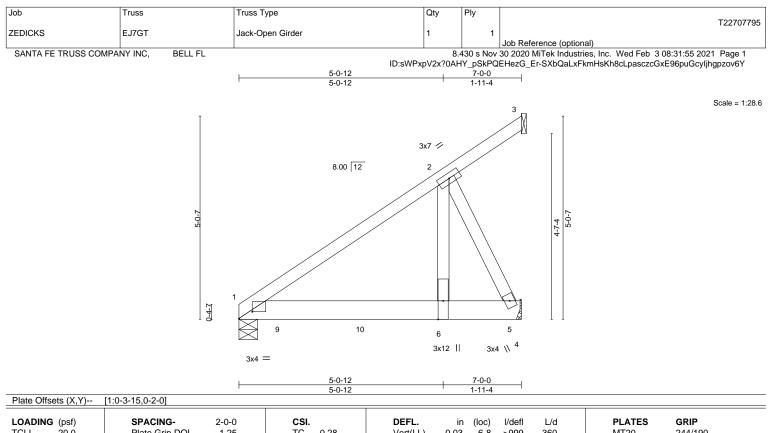
Max Horz 2=172(LC 12)

Max Uplift 3=-80(LC 12), 2=-20(LC 12)

Max Grav 3=190(LC 17), 2=365(LC 1), 4=126(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-11-4 zone; C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

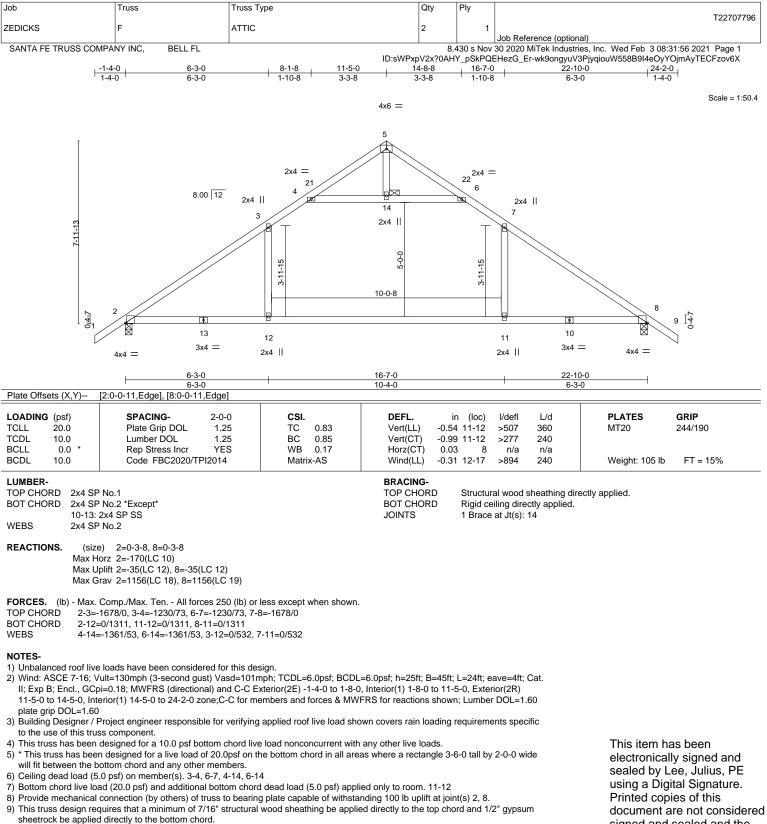
This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2020/TPI2014	CSI. TC 0.28 BC 0.44 WB 0.38 Matrix-MP	Vert(CT) - Horz(CT) -	-0.03 6-8 -0.06 6-8 -0.01 3 0.02 6-8	l/defi L/d >999 360 >999 240 n/a n/a >999 240	Weight: 39 lb	GRIP 244/190 FT = 15%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.2		BRACING- TOP CHORD BOT CHORD		al wood sheathing dir iling directly applied c	rectly applied or 5-8-14 or 10-0-0 oc bracing.	4 oc purlins.
Max H Max U	a) 1=0-5-8, 3=Mechanical, 5=Mechani orz 1=133(LC 8) plift 3=-8(LC 21), 5=-218(LC 8) rav 1=783(LC 1), 3=6(LC 13), 5=1319(L						
TOP CHORD 1-2=- BOT CHORD 1-6=-	Comp./Max. Ten All forces 250 (lb) or 915/49 106/722, 5-6=-106/722 161/1587, 2-5=-1548/228	less except when shown.					
 I; Exp B; Encl., GCp 2) Building Designer / I to the use of this true 3) This truss has been 4) * This truss has been will fit between the b 	designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti ottom chord and any other members.	OL=1.60 plate grip DOL= applied roof live load sho be load nonconcurrent with	1.60 own covers rain load any other live loads	ling requireme	ents specific		
 6) Refer to girder(s) for 7) Provide mechanical 5=218. 8) Hanger(s) or other c 5-0-12 on bottom ch 	truss to truss connections. truss to truss connections. connection (by others) of truss to bearin onnection device(s) shall be provided su ord. The design/selection of such conne S) section, loads applied to the face of th	fficient to support concen ection device(s) is the res	trated load(s) 1271 ponsibility of others.	Ib down and 2	1 0 /	sealed by using a Di	has been ally signed and Lee, Julius, PE gital Signature. pies of this
LOAD CASE(S) Stand 1) Dead + Roof Live (b Uniform Loads (plf) Vert: 1-3=-6 Concentrated Loads	alanced): Lumber Increase=1.25, Plate I 60, 1-4=-20	ncrease=1.25				signed and signature	are not considered d sealed and the must be verified ectronic copies.

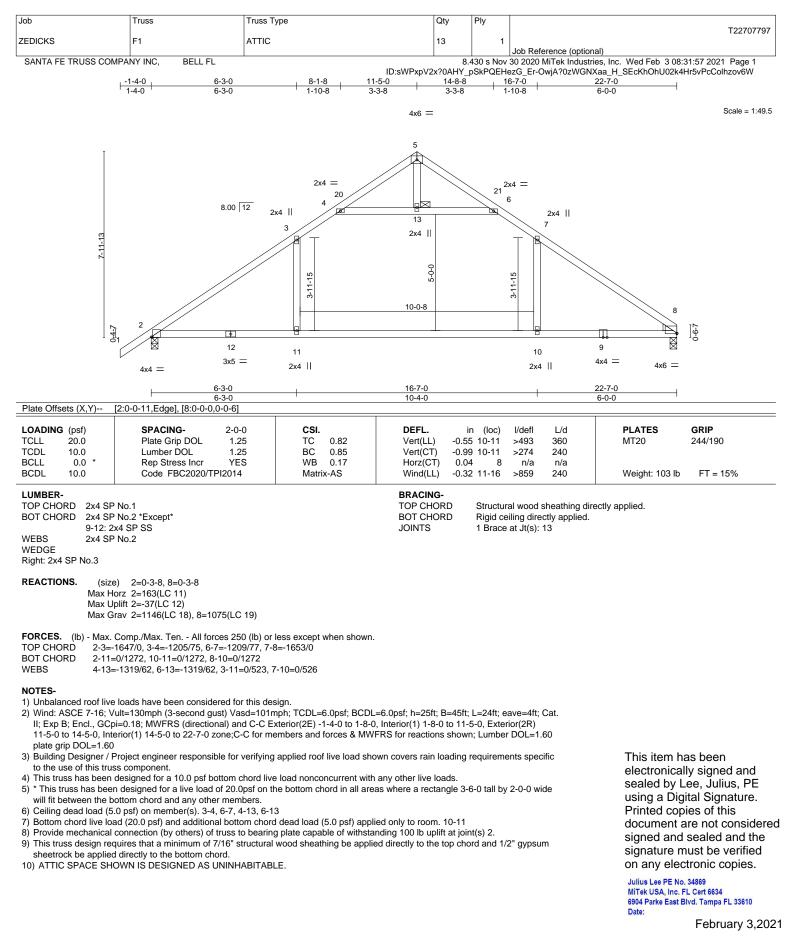
Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

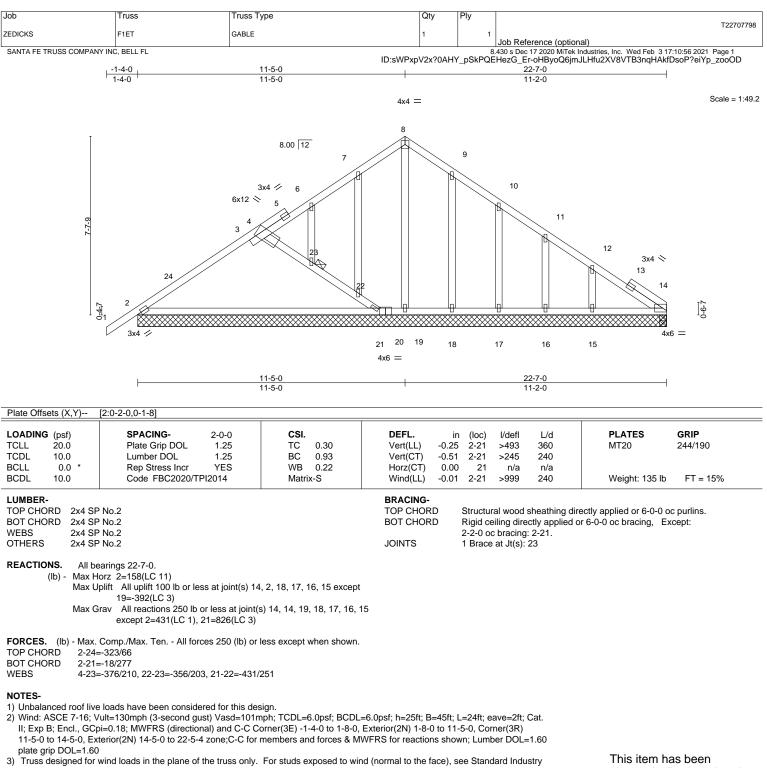
Concentrated Loads (lb)

Vert: 6=-1271(F) 9=-99 10=-179


10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021

19/2020 BEFORE USE. ding component, not lesign into the overall y and permanent bracing egarding the 99 and BCSI Building Component 6904 Parke

6904 Parke East Blvd. Tampa, FL 36610

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

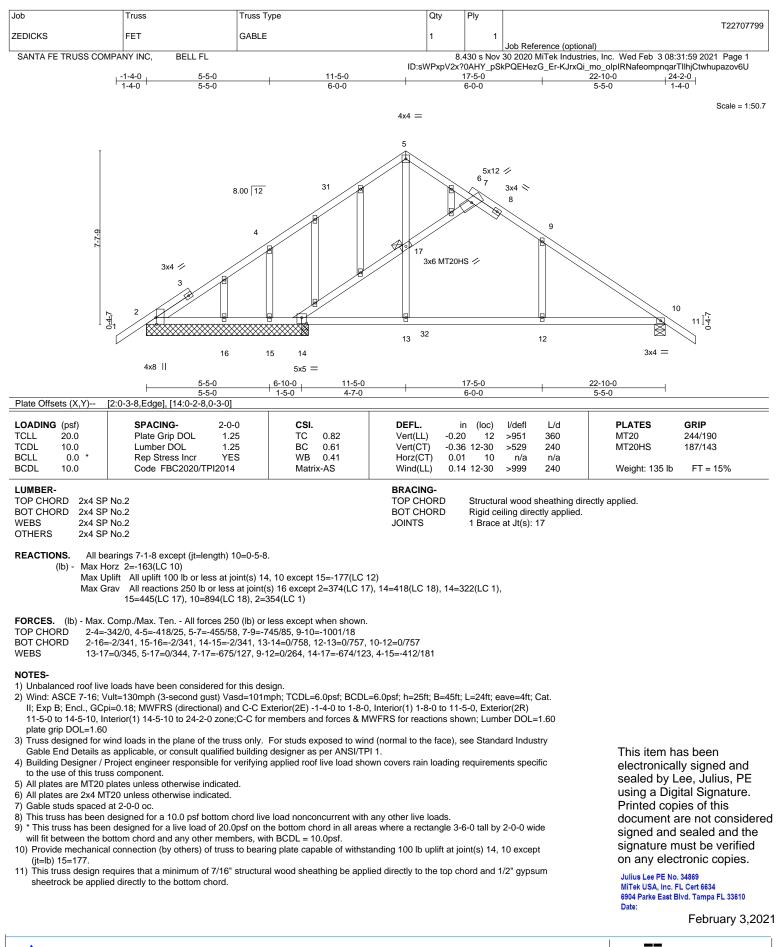
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) All plates are 1.5x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

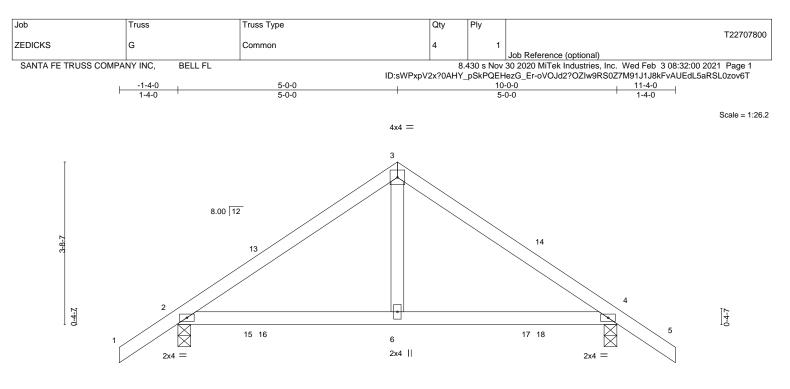
8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 18, 17, 16, 15 except (jt=lb) 19=392.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek

			5-0-0 5-0-0					-0-0 -0-0			
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0	.22	Vert(LL)	-0.02	6-9	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0	.25	Vert(CT)	-0.03	6-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0	.05	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code FBC2020/T	PI2014	Matrix-A	AS	Wind(LL)	0.03	6-9	>999	240	Weight: 43 lb	FT = 15%

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-3-8

Max Horz 2=-84(LC 10) Max Uplift 2=-166(LC 12), 4=-166(LC 12)

Max Grav 2=480(LC 1), 4=480(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-467/234, 3-4=-467/234

BOT CHORD 2-6=-75/331, 4-6=-75/331

NOTES-

1) Unbalanced roof live loads have been considered for this design.

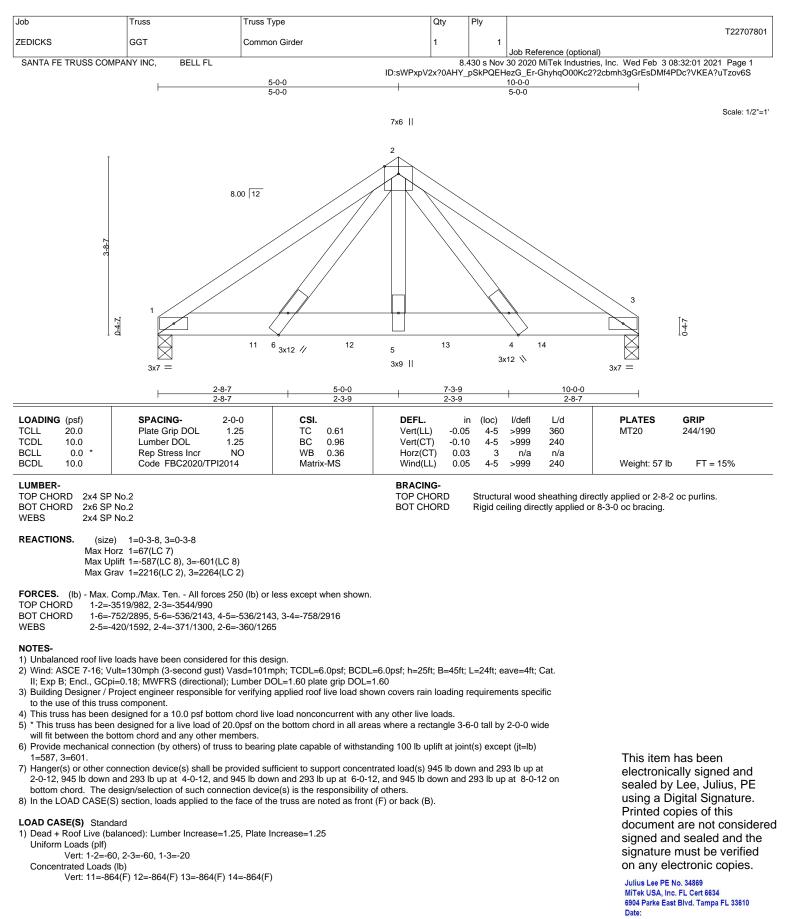
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-0-0, Exterior(2R) 5-0-0 to 8-0-0, Interior(1) 8-0-0 to 11-4-0 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=166, 4=166.

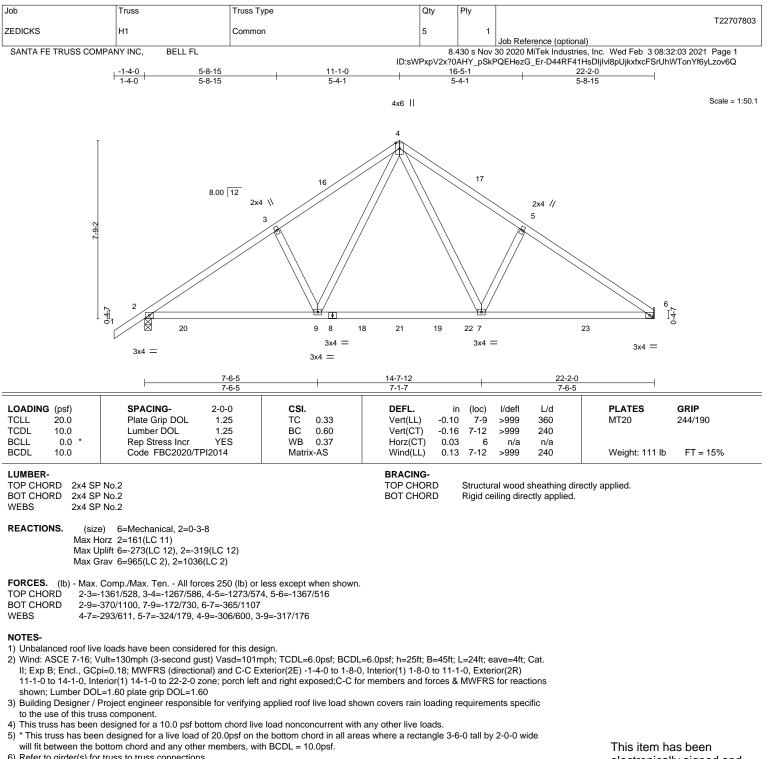

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

February 3,2021


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

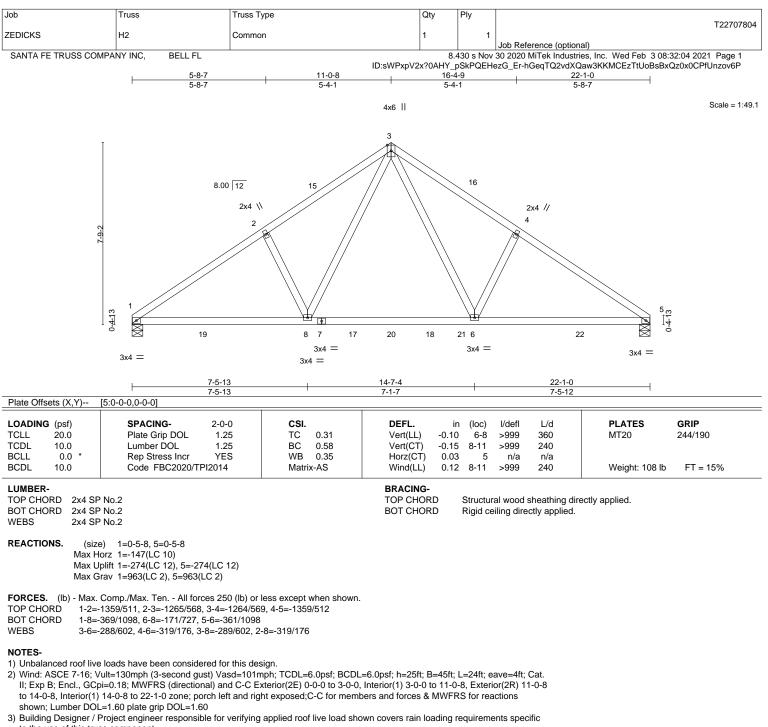
electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

6) Refer to girder(s) for truss to truss connections.

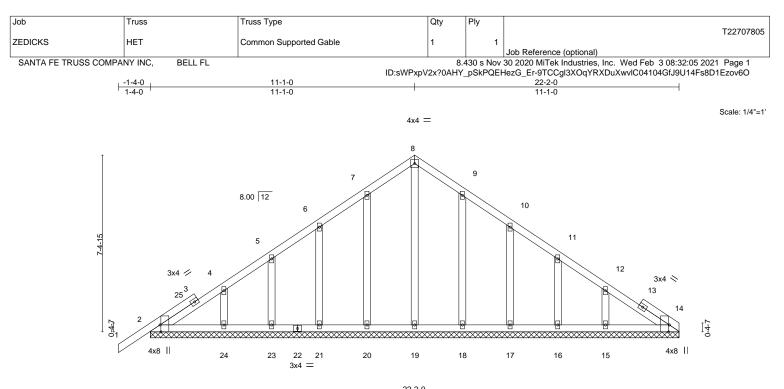
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=273, 2=319.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021


- to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=274, 5=274.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

4	~	~	-(
2	2.	-2	-(

CLL 20.0				
	Plate Grip DOL 1.25	TC 0.11	Vert(LL) -0.00 1 n/r 120	MT20 244/190
CDL 10.0	Lumber DOL 1.25	BC 0.06	Vert(CT) -0.00 1 n/r 120	
CLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) 0.00 14 n/a n/a	
CDL 10.0	Code FBC2020/TPI2014	Matrix-S		Weight: 132 lb FT = 15%

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-2-0.

2x4 SP No 2

(lb) -Max Horz 2=154(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 23, 24, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 14, 19, 20, 21, 23, 24, 18, 17, 16, 15

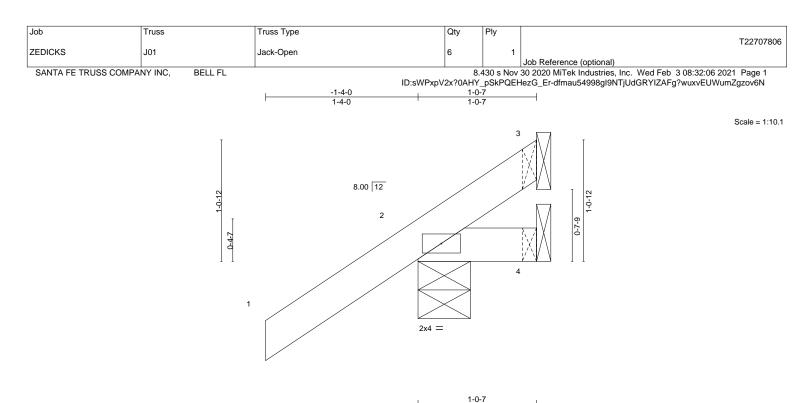
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 11-1-0, Corner(3R) 11-1-0 to 14-1-0, Exterior(2N) 14-1-0 to 22-2-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 23, 24, 18, 17, 16, 15.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

			1-0-		- 1			
LOADING (psf)	SPACING- 2-0-0	CSI. DEI	L. ir	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.15 Ver	(LL) 0.00	7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.04 Ver	(CT) 0.00	7	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00 Hor	z(CT) 0.00	2	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MP Win	d(LL) -0.00	7	>999	240	Weight: 6 lb	FT = 15%

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

Max Grav 3=9(LC 8), 2=173(LC 12), 4=13(LC 12)Max Grav 3=9(LC 8), 2=173(LC 1), 4=24(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

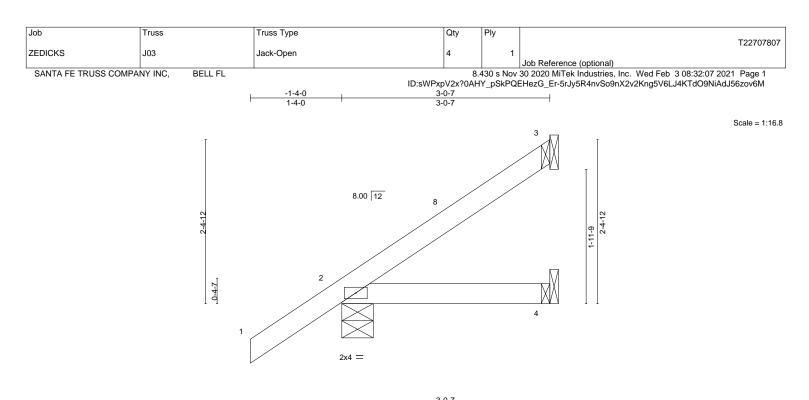
NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
- to the use of this truss component. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021


Structural wood sheathing directly applied or 1-0-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.
 (size)
 3=Mechanical, 2=0-5-8, 4=Mechanical

 Max Horz
 2=58(LC 12)
 12=58(LC 12)

 Max Uplift
 3=-2(LC 9), 2=-79(LC 12), 4=-13(LC 1)

					3-0-7 3-0-7						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	тс	0.13	Vert(LL)	-0.00	4-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC	0.08	Vert(CT)	-0.01	4-7	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2020/TF	PI2014	Matri	K-MP	Wind(LL)	-0.00	4-7	>999	240	Weight: 13 lb	FT = 15%

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-5-8, 4=Mechanical Max Horz 2=96(LC 12)

Max Uplift 3=-27(LC 12), 2=-44(LC 12)

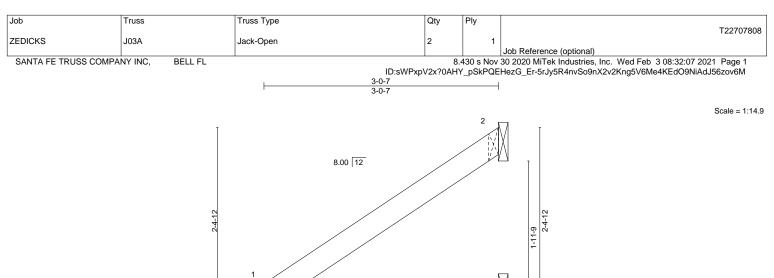
Max Grav 3=71(LC 17), 2=217(LC 1), 4=53(LC 3)

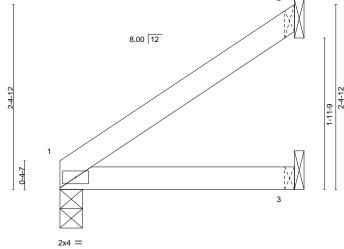
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 2-11-11 zone;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021

Structural wood sheathing directly applied or 3-0-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

				1		3-0-7			1			
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.11	Vert(LL)	-0.00	3-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	-0.01	3-6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP	Wind(LL)	0.01	3-6	>999	240	Weight: 10 lb	FT = 15%

BOT CHORD

3-0-7

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2

REACTIONS. (size) 1=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 1=57(LC 12)

Max Uplift 2=-34(LC 12)

Max Grav 1=119(LC 1), 2=79(LC 17), 3=56(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

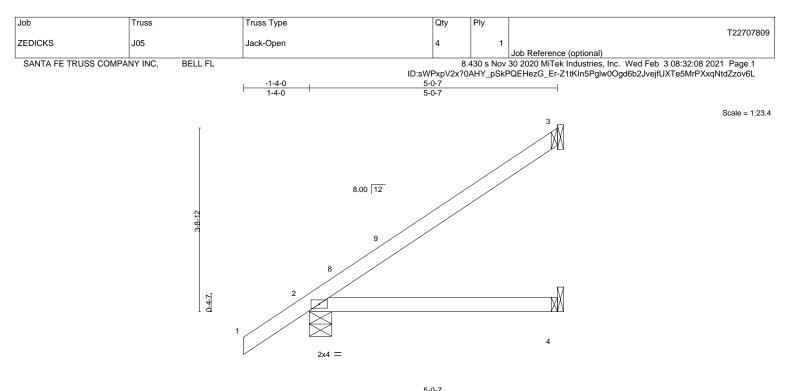
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Structural wood sheathing directly applied or 3-0-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	1					5-0-7					1	
LOADING (ps	f) SPACII	NG-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	0 Plate G	rip DOL	1.25	TC	0.29	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL 10.	.0 Lumber	DOL	1.25	BC	0.25	Vert(CT)	-0.06	4-7	>999	240		
BCLL 0.	.0 * Rep Str	ess Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.	.0 Code F	BC2020/TF	912014	Matri	x-AS	Wind(LL)	0.03	4-7	>999	240	Weight: 19 lb	FT = 15%

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-5-8, 4=Mechanical

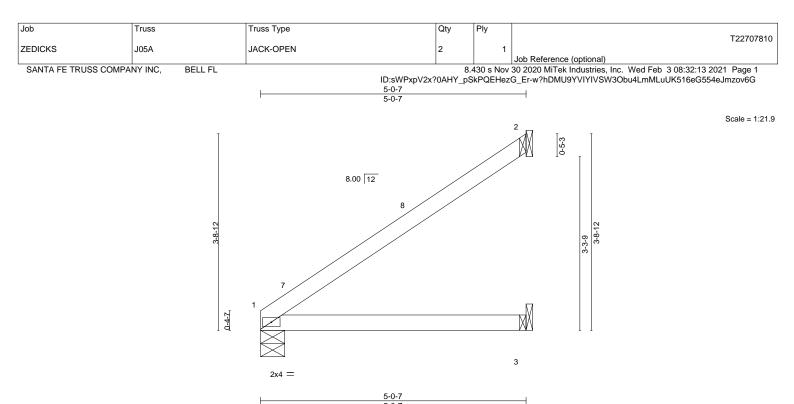
Max Horz 2=134(LC 12)

Max Uplift 3=-54(LC 12), 2=-30(LC 12)

Max Grav 3=132(LC 17), 2=290(LC 1), 4=90(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 4-11-11 zone;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	тс	0.32	Vert(LL)	-0.03	3-6	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.25	BC	0.26	Vert(CT)	-0.06	3-6	>947	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-AS	Wind(LL)	0.04	3-6	>999	240	Weight: 17 lb	FT = 15%

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=0-5-8, 2=Mechanical, 3=Mechanical

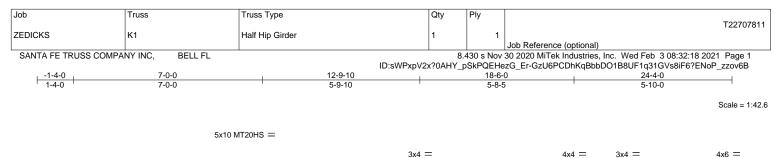
Max Horz 1=96(LC 12)

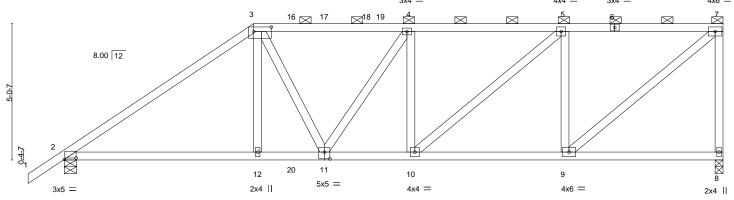
Max Uplift 2=-59(LC 12)

Max Grav 1=199(LC 1), 2=137(LC 17), 3=92(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-11-11 zone;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

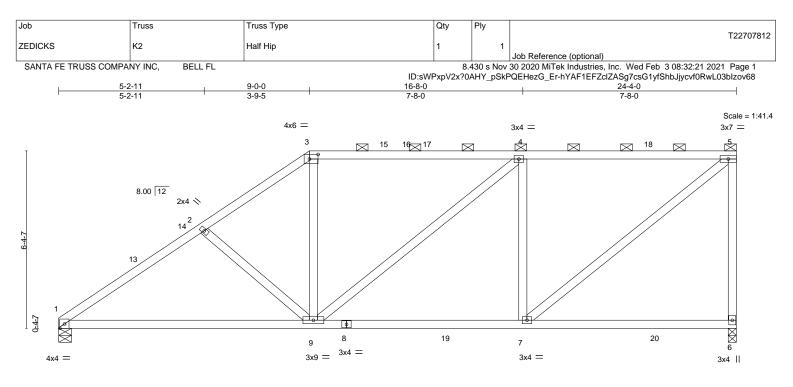

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

			40.0.0	40.0.0	
├ ───	7-0-0 7-0-0	9-7-4	12-8-3 3-0-15	18-6-0 5-9-13	<u>24-4-0</u> 5-10-0
Plate Offsets (X,Y)	[2:0-5-4,0-0-10], [3:0-7-12,0-		3-0-13	5-5-15	3-10-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/TPl2	2-0-0 CSI. 1.25 TC 0.98 1.25 BC 0.97 NO WB 0.56 014 Matrix-MS	Vert(CT) -0 Horz(CT) 0	in (loc) I/defl L/d 1.12 11 >999 360 1.23 10-11 >999 240 1.08 8 n/a n/a 1.10 10-11 >999 240	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 140 lb FT = 15%
LUMBER- TOP CHORD 2x4 SF 3-6: 2x BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz	P SS *Except* (4 SP No.1, 6-7: 2x4 SP No.2 P No.2		BRACING- TOP CHORD BOT CHORD		rectly applied, except end verticals, and 3-7.
Max U Max G FORCES. (Ib) - Max. TOP CHORD 2-3= 30T CHORD 2-12: WEBS 3-12:	Jplift 8=-305(LC 5), 2=-400(L Grav 8=1742(LC 1), 2=2432(L Comp./Max. Ten All forces -3830/650, 3-4=-3520/621, 4- =-570/3089, 11-12=-571/311		7-8=-1689/332 5/1863		
 II; Exp B; Encl., GCj 2) Building Designer / to the use of this tru 3) Provide adequate d 4) All plates are MT20 5) This truss has been 6) * This truss has bee will fit between the b 7) Provide mechanical 	pi=0.18; MWFRS (directional Project engineer responsible iss component. rainage to prevent water pon- plates unless otherwise indic designed for a 10.0 psf botto in designed for a live load of 2 bottom chord and any other m	ated. m chord live load nonconcurre 20.0psf on the bottom chord in	DOL=1.60 ad shown covers rain loadir nt with any other live loads. all areas where a rectangle	ng requirements specific 3-6-0 tall by 2-0-0 wide	This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature.
 Hanger(s) or other of 7-0-0, and 139 lb do at 7-0-0, and 86 lb connection device(s) 	connection device(s) shall be own and 101 lb up at 8-4-12, down at 8-4-12, and 1299 lb s) is the responsibility of other	ne size or the orientation of the provided sufficient to support c and 40 lb down and 30 lb up a down and 238 lb up at 9-7-4 o s. the face of the truss are noted	oncentrated load(s) 171 lb (t 9-7-4 on top chord, and 5 in bottom chord. The desig	down and 182 lb up at 32 lb down and 135 lb up	Printed copies of this document are not consider signed and sealed and the signature must be verified on any electronic copies.
Uniform Loads (plf)	dard balanced): Lumber Increase= 60, 3-7=-60, 8-13=-20	1.25, Plate Increase=1.25			Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: February 3,2

Continued on page 2



ſ	Job	Truss	Truss Type	Qty	Ply			
	ZEDICKS	К1	Half Hip Girder	1	1	T22707811		
						Job Reference (optional)		
	SANTA FE TRUSS COMPA	NY INC, BELL FL		8.	430 s Nov	30 2020 MiTek Industries, Inc. Wed Feb 3 08:32:18 2021 Page 2		
			ID:sWPxpV2x?0AHY_pSkPQEHezG_Er-GzU6PCDhKqBbbDO1B8UF1q31GVs8iF6?ENoP_zzov6B					

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-158(F) 11=-1299(F) 12=-532(F) 16=-127(F) 17=21(F) 20=-63(F)

	<u>9-0-0</u> 9-0-0				<u>16-8-0</u> 7-8-0					<u>24-4-0</u> 7-8-0	
Plate Offsets (X,Y)					7-8-0					7-8-0	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.74	Vert(LL)	-0.14	9-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC	0.73	Vert(CT)	-0.31	9-12	>950	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.03	6	n/a	n/a		
BCDL 10.0	Code FBC2020/T	PI2014	Matrix-	AS	Wind(LL)	0.05	9-12	>999	240	Weight: 136 lb	FT = 15%

LUMBER-	BRACING-	
TOP CHORD 2x4 SP No.2	TOP CHORD SI	tructural wood sheathing directly applied, except end verticals, and
BOT CHORD 2x4 SP No.2	2-	-0-0 oc purlins (4-11-13 max.): 3-5.
WEBS 2x4 SP No.2	BOT CHORD R	ligid ceiling directly applied.

REACTIONS. (size) 1=0-5-8, 6=0-3-8 Max Horz 1=174(LC 12) Max Uplift 1=-37(LC 12), 6=-135(LC 9) Max Grav 1=1099(LC 17), 6=1118(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-1546/96, 2-3=-1351/94, 3-4=-1093/104, 4-5=-1024/117, 5-6=-964/173
- BOT CHORD 1-9=-185/1302 7-9=-117/1024
- WEBS 2-9=-290/105, 3-9=0/447, 4-7=-555/187, 5-7=-144/1272

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 24-2-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

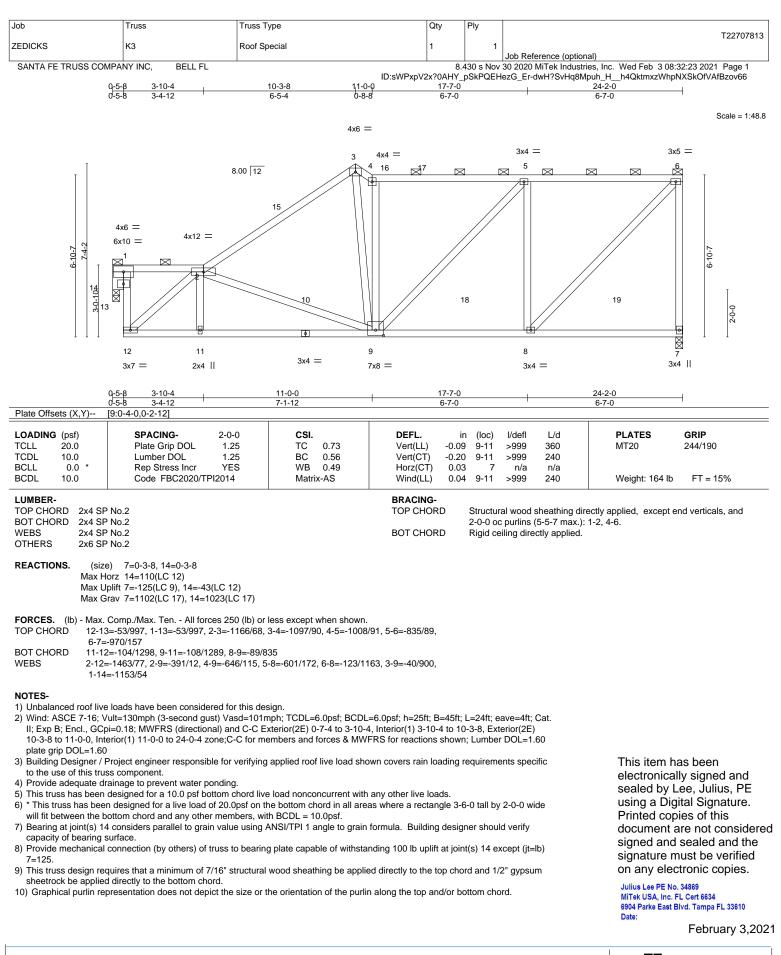
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

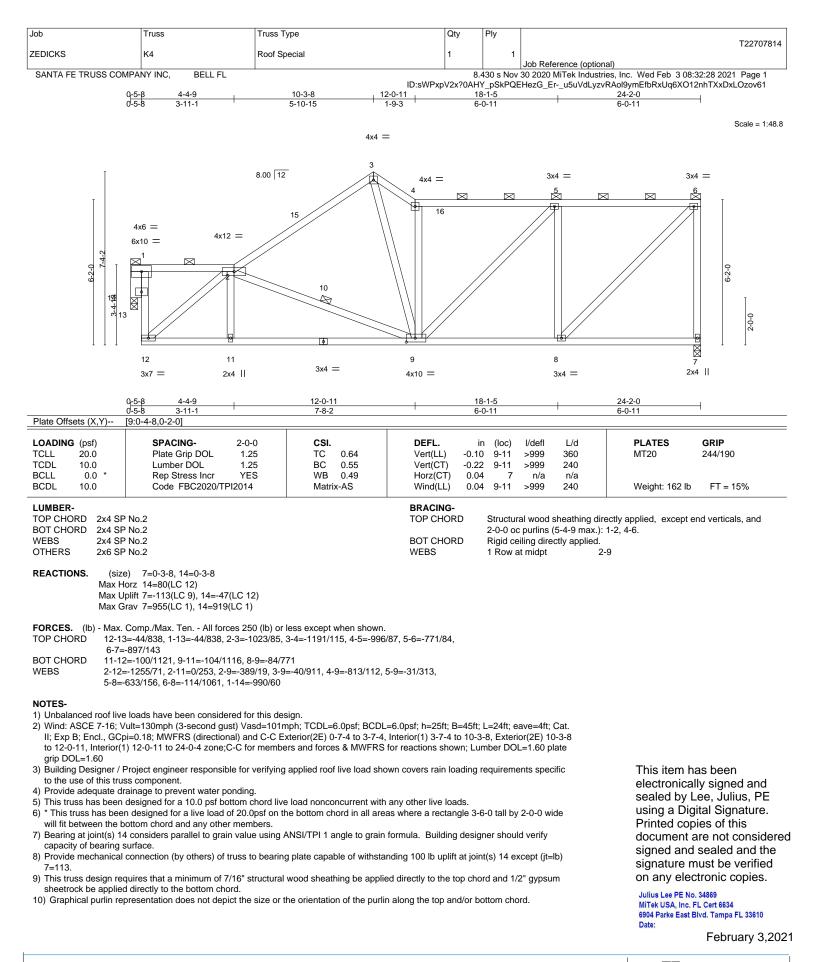
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 6=135.

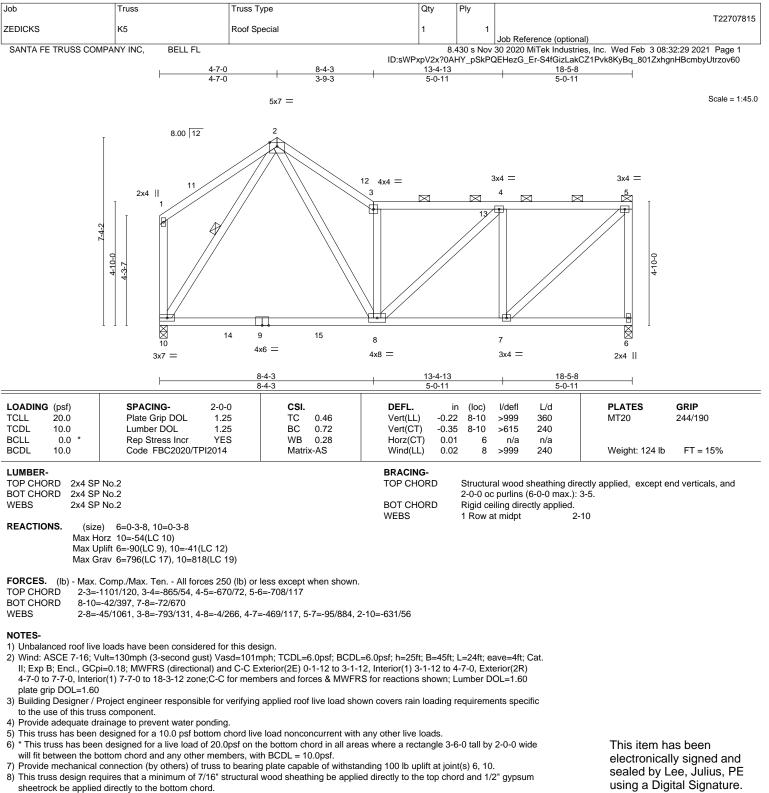
7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

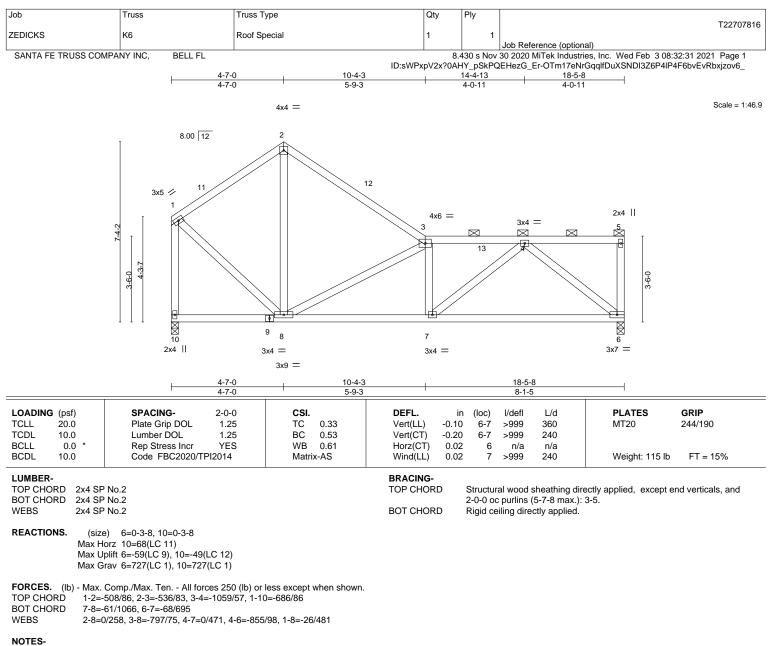

February 3,2021


ing Milek* g Component 6904 Parke East Blvd

Tampa, FL 36610

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd Tampa, FL 36610


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-7-0, Exterior(2R) 4-7-0 to 7-7-0, Interior(1) 7-7-0 to 18-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

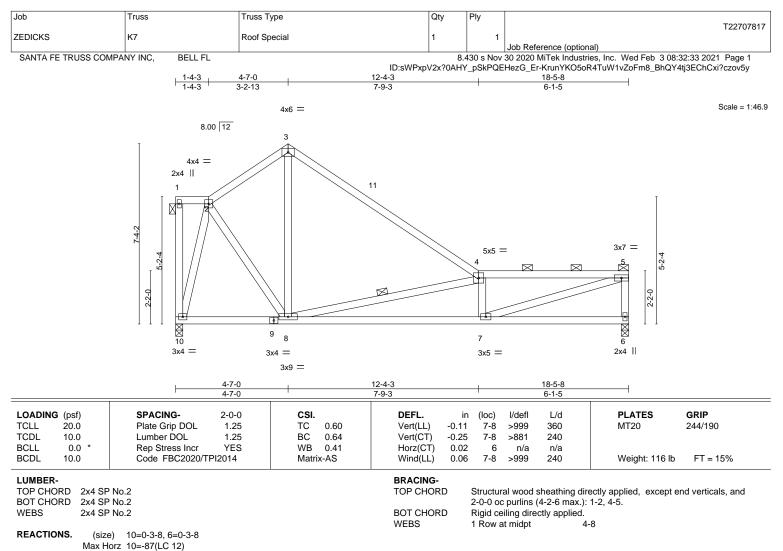
4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 10.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Max Uplift 10=-60(LC 12), 6=-28(LC 12)

Max Grav 10=727(LC 1), 6=727(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-472/75, 3-4=-593/60, 4-5=-1639/72, 5-6=-667/60

BOT CHORD 7-8=-81/1668

WEBS 2-10=-665/80, 2-8=-37/410, 3-8=0/253, 4-8=-1317/131, 4-7=-370/115, 5-7=-71/1624

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-4-3, Interior(1) 1-4-3 to 4-7-0, Exterior(2R) 4-7-0 to 7-7-0, Interior(1) 7-7-0 to 18-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

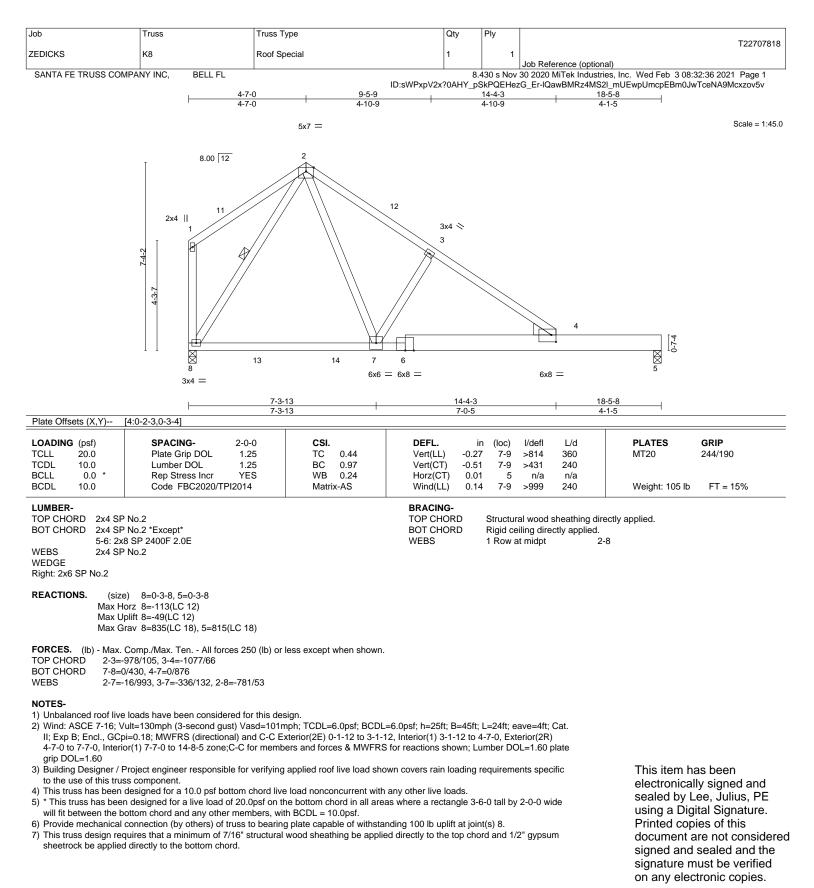
4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.

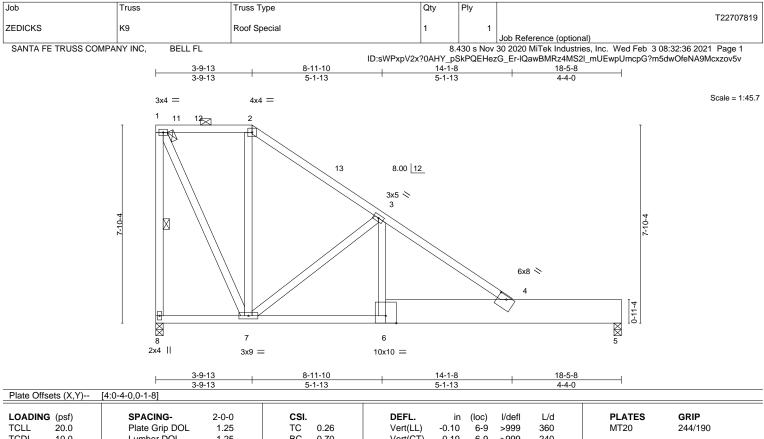
8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021



Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL 1.25 Rep Stress Incr YES Code FBC2020/TPI2014	BC 0.70 WB 0.56 Matrix-AS	Vert(CT) -0.1 Horz(CT) 0.0 Wind(LL) 0.0	01 5	>999 240 n/a n/a >999 240	Weight: 131 lb	FT = 15%
LUMBER		•	· ·	BRACING-			·	
TOP CH			TOP CHORD Structural wood sheathing directly applied, except end verticals, and					
BOT CH		P No.2 *Except*		DOTOUODD		purlins (6-0-0 max.):	: 1-2.	
		12 SP No.2		BOT CHORD	0	ing directly applied.		
WEBS	2x4 SF	⁹ No.2		WEBS	1 Row at	midpt 1	-8	
REACTIO	ONS. (size	e) 8=0-3-8, 5=0-3-8						
NE/1011	(-	lorz 8=-209(LC 12)						
		Iplift 8=-78(LC 12)						
		, ,						
	iviax G	Grav 8=727(LC 1), 5=727(LC 1)						

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-695/108, 1-2=-285/41, 2-3=-439/0, 3-4=-1115/0

BOT CHORD 6-7=0/857, 4-6=0/848

WEBS 1-7=-97/662, 3-7=-722/79, 3-6=0/497

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-9-13, Exterior(2R)

3-9-13 to 6-9-13, Interior(1) 6-9-13 to 14-2-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

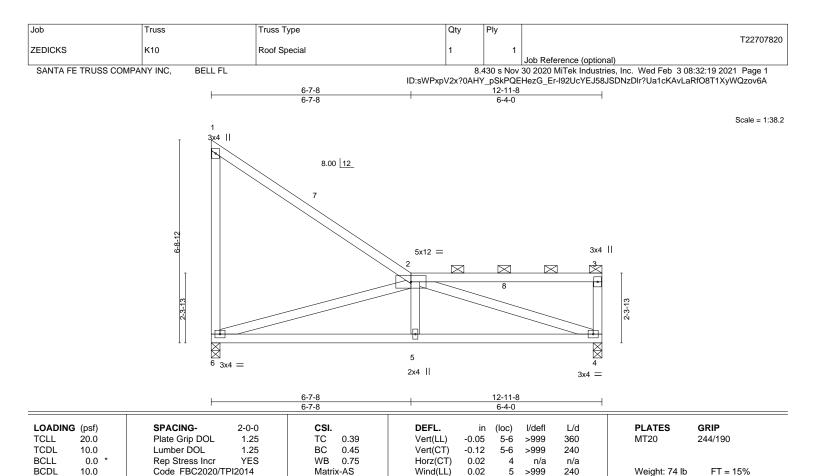
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

BRACING-

TOP CHORD

BOT CHORD

۱۸	/F	B	S		

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2

REACTIONS. (size) 6=0-3-8, 4=0-3-8 Max Horz 6=-124(LC 12)

Max Uplift 6=-71(LC 12), 4=-29(LC 8)

Max Grav 6=507(LC 1), 4=507(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 5-6=0/895, 4-5=0/904

WEBS 2-6=-915/86 2-5=0/281 2-4=-857/0

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

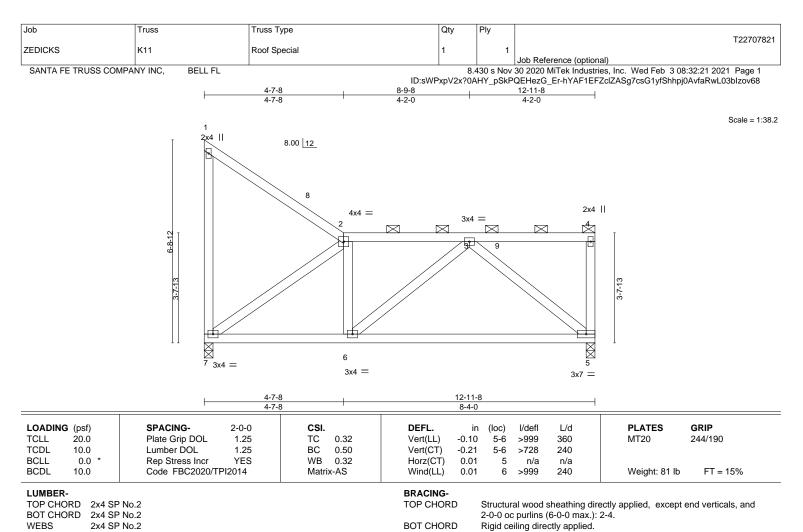
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 2-3.

Rigid ceiling directly applied.

REACTIONS. (size) 7=0-3-8, 5=0-3-8 Max Horz 7=-85(LC 12) Max Holift 7=-63(LC 12) 5=

Max Horz 7=-85(LC 12) Max Uplift 7=-63(LC 12), 5=-53(LC 9) Max Grav 7=507(LC 1), 5=507(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-488/0

BOT CHORD 6-7=0/484, 5-6=-59/417

WEBS 2-7=-596/46, 3-5=-500/88

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

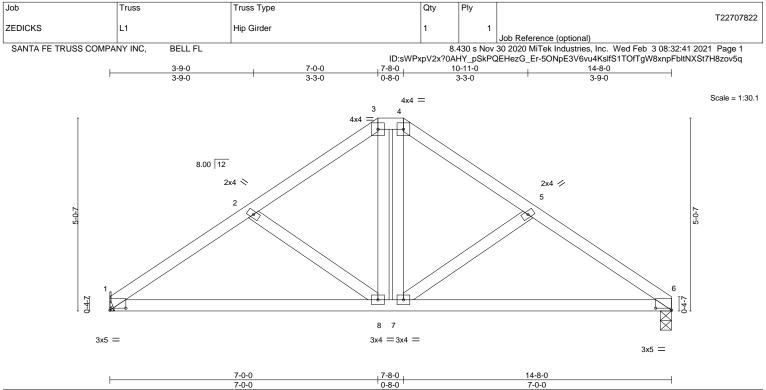
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Plate Offsets (X,Y)	[1:0-5-0,0-0-10], [6:0-5-0,0-0-10]					1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCodeFBC2020/TPI2014	CSI. TC 0.25 BC 0.61 WB 0.17 Matrix-MS	Vert(LL) -0.0	95 7-14 >9 2 8-11 >9 94 6	defl L/d 999 360 999 240 n/a n/a 999 240	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 15%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2		BRACING- TOP CHORD	except 2-0-0 oc pu	rlins (4-8-15 max.)) oc purlins,
Max L	e) 1=Mechanical, 6=0-3-8 lorz 1=-94(LC 6) Jplift 1=-243(LC 8), 6=-242(LC 8) Grav 1=1291(LC 1), 6=1289(LC 1)		BOT CHORD	Rigia ceiling	g directiy applied c	or 10-0-0 oc bracing.	
TOP CHORD 1-2= BOT CHORD 1-8=	Comp./Max. Ten All forces 250 (lb) or -2052/456, 2-3=-1878/448, 3-4=-1527/39 -329/1681, 7-8=-271/1527, 6-7=-326/167	7, 4-5=-1875/446, 5-6=-20					

WEBS 3-8=-110/722, 4-7=-142/769

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Encl., GCpi=0.18; MWFRS (directional); Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

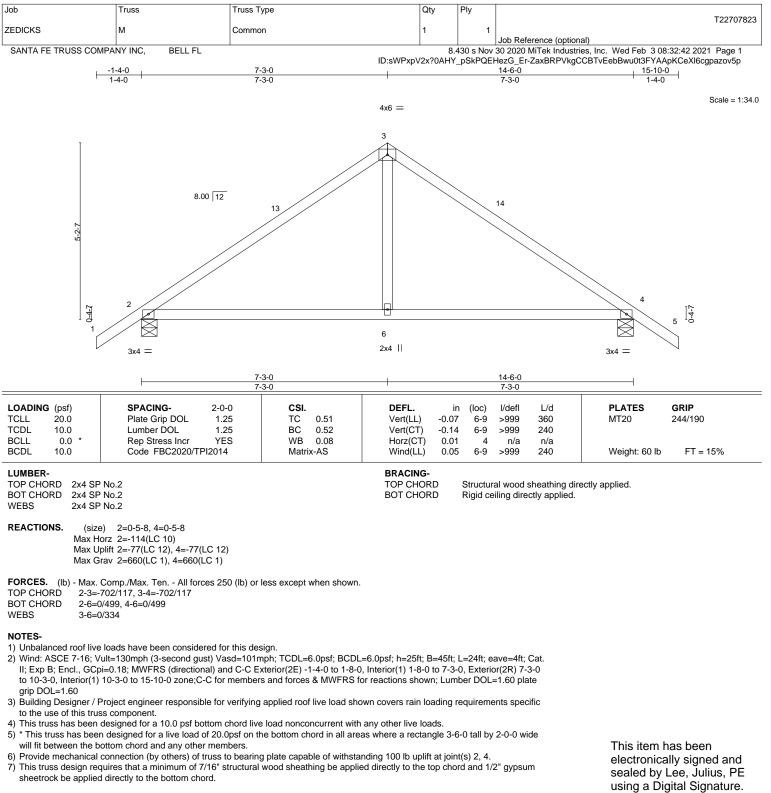
7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=243, 6=242.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 262 lb down and 247 lb up at 7-0-0, and 145 lb down and 103 lb up at 7-8-0 on top chord, and 532 lb down and 135 lb up at 7-0-0, and 560 lb down and 149 lb up at 7-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

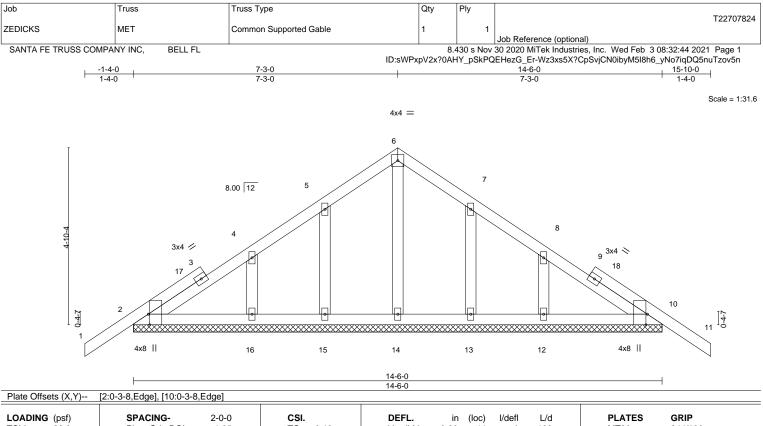
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-12=-20 Concentrated Loads (lb) Vert: 3=-187(F) 4=-127(F) 8=-532(F) 7=-560(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021



using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2020/TPI2014	CSI. TC 0.12 BC 0.07 WB 0.04 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 11 11 10	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 15%
LUMBER- TOP CHORD 2x4 SP No.2) S	Structur	al wood :	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.2

REACTIONS. All bearings 14-6-0.

(lb) - Max Horz 2=-107(LC 10)

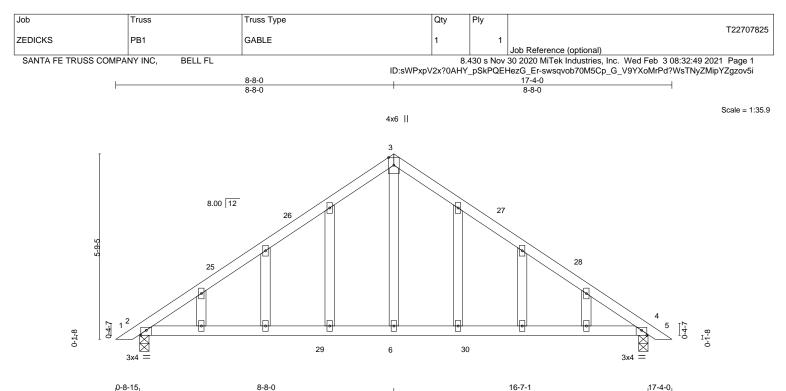
Max Uplift All uplift 100 b or less at joint(s) 2, 10, 15, 16, 13, 12 Max Grav All reactions 250 b or less at joint(s) 2, 10, 14, 15, 16, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 7-3-0, Corner(3R) 7-3-0 to 10-3-0, Exterior(2N) 10-3-0 to 15-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 16, 13, 12.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

late Offsets (X,Y) [2	2:0-2-0,Edge], [4:0-2-0,Edge]						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l	/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.65	Vert(LL) -0.14	4 6-24 >	999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.75	Vert(CT) -0.24	4 6-24 >	784 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) 0.0	1 4	n/a n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-AS	Wind(LL) 0.07	7 6-21 >	999 240	Weight: 84 lb	FT = 15%
BOT CHORD 2x4 SP I			BOT CHORD	r tigita oonn	ng directly applied.		
WEBS 2x4 SP OTHERS 2x4 SP							
OTHERS 2x4 SP REACTIONS. (size)	No.2 2=0-3-8, 4=0-3-8						
DTHERS 2x4 SP REACTIONS. (size) Max Ho	No.2						

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

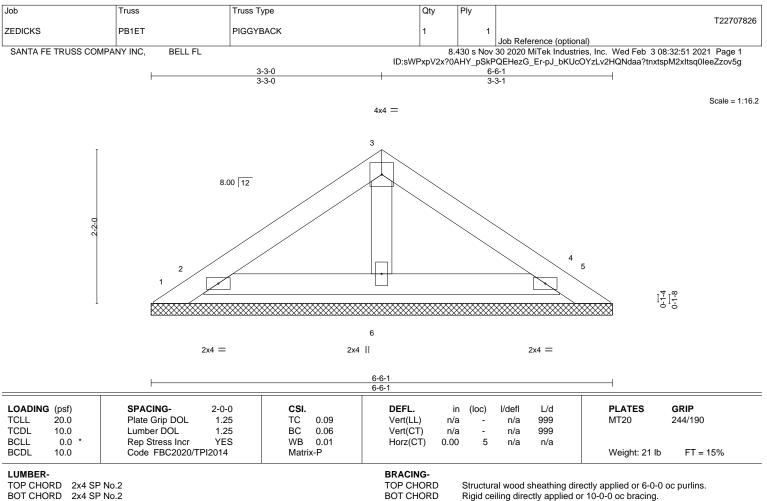
 TOP CHORD
 2-3=-867/119, 3-4=-867/119

 BOT CHORD
 2-6=0/692, 4-6=0/692

 WEBS
 3-6=0/452

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-3-2, Interior(1) 3-3-2 to 8-8-0, Exterior(2R) 8-8-0 to 11-8-0, Interior(1) 11-8-0 to 17-0-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

REACTIONS. All bearings 6-6-1.

Max Horz 1=-40(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

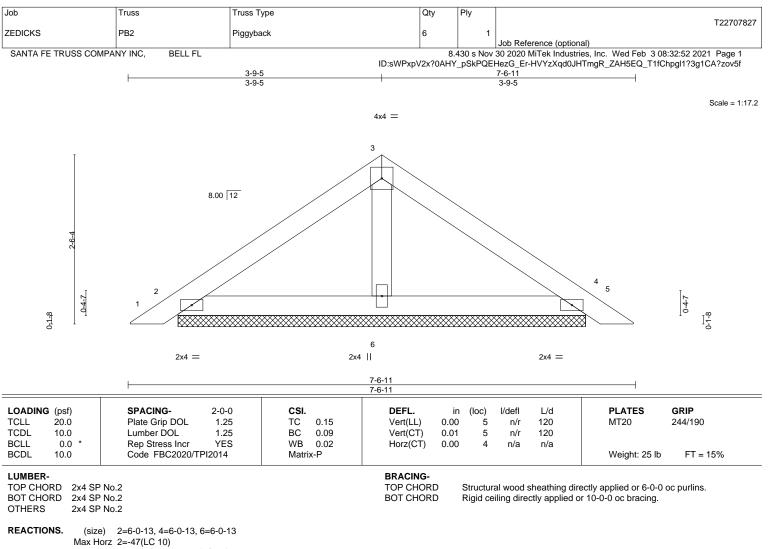
3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.


8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

Max Uplift 2=-41(LC 12), 4=-41(LC 12)

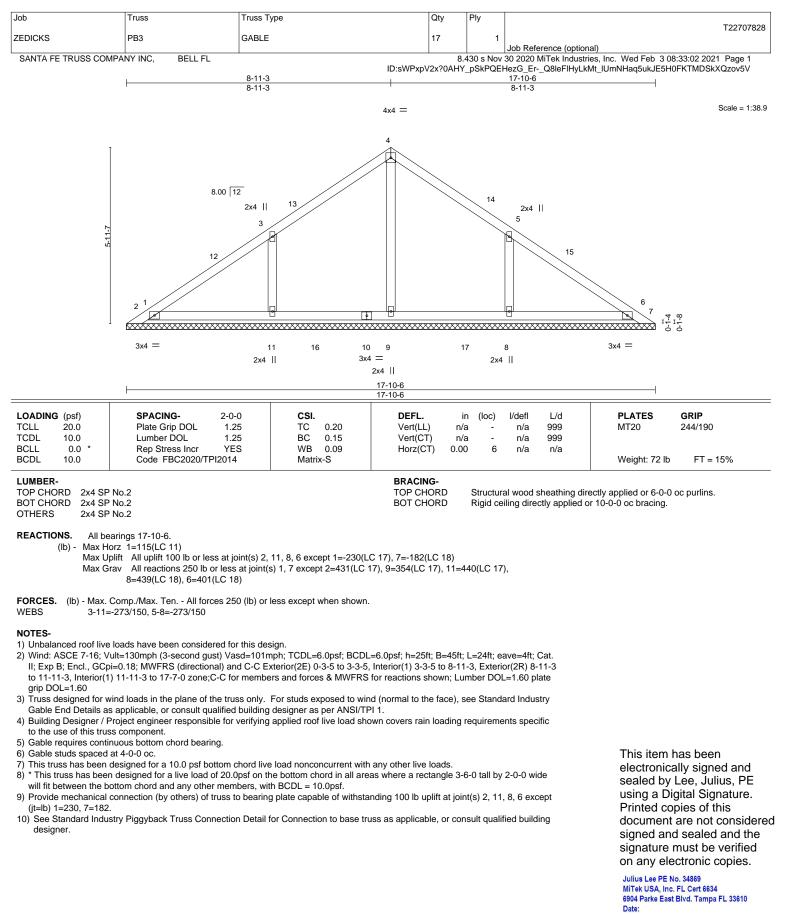
Max Grav 2=160(LC 1), 4=160(LC 1), 6=221(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

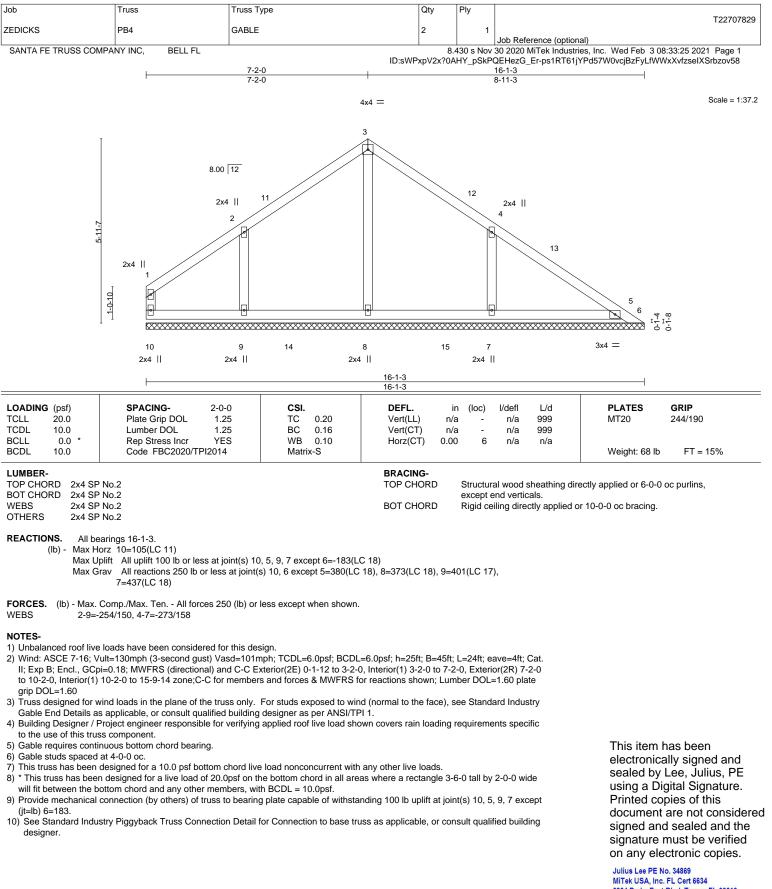
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-5 to 3-3-5, Interior(1) 3-3-5 to 3-9-5, Exterior(2R) 3-9-5 to 6-9-12, Interior(1) 6-9-12 to 7-3-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

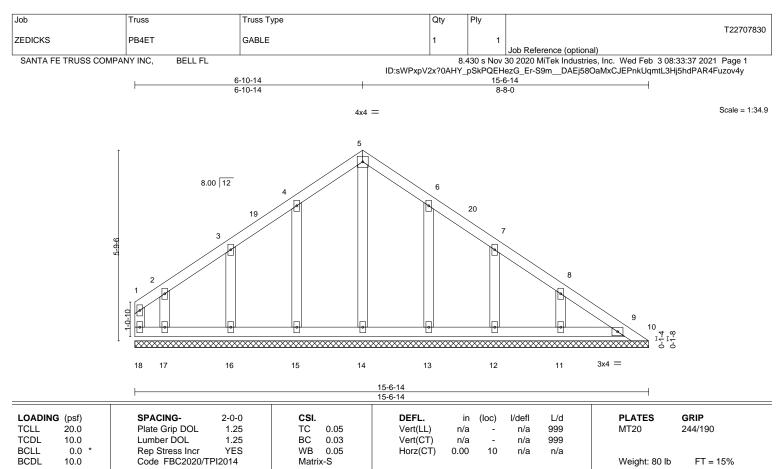

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 3,2021

February 3,2021



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

6904 Parke East Blvd Tampa, FL 36610

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.	
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.
OTHERS	2x4 SP No.2			

REACTIONS. All bearings 15-6-14.

(lb) - Max Horz 18=101(LC 11)

Max Uplift All uplift 100 b or less at joint(s) 18, 10, 15, 16, 17, 13, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 18, 10, 9, 14, 15, 16, 17, 13, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 2-10-14, Interior(1) 2-10-14 to 6-10-14, Exterior(2R) 6-10-14 to 9-10-14, Interior(1) 9-10-14 to 15-3-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 10, 15, 16, 17, 13, 12, 11.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been electronically signed and sealed by Lee, Julius, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Julius Lee PE No. 34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 3,2021

