

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

> MiTek USA, Inc. 6904 Parke East Blvd.

Tampa, FL 33610-4115

RE: 2554880 - CRAIG WALTERS

Site Information:

Customer Info: Project Name: Model: Lot/Block: Address: City:

Subdivision:

State:

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2017/TPI2014 Wind Code: ASCE 7-10 Roof Load: 37.0 psf

Design Program: MiTek 20/20 8.2 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 7 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1	T22032636	T01	12/1/20
2	T22032637	T01G	12/1/20
3	T22032638	T02	12/1/20
4	T22032639	T04	12/1/20
5	T22032640	T04G	12/1/20
6	T22032641	V01	12/1/20
7	T22032642	V02	12/1/20

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

L	7-9-2	15-10-0		23-10-14		31-0-0	31-8-0
	7-9-2	8-0-14	0 0 4 4 0 4 01 50 0	8-0-14		7-1-2	0-8-0
Plate Offsets (X,Y)	[2:0-3-14,0-1-8], [2:0-0-4,Edge], [3:0-3-0,	0-3-0], [7:0-3-0,0-3-0], [8:	0-3-14,0-1-8], [8:0	-0-4,Edgej			
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCodeFBC2017/TPI2014	CSI. TC 0.38 BC 0.79 WB 0.49 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.19 10-12 -0.40 10-12 0.09 8	l/defl L/d >999 240 >958 180 n/a n/a	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 1-3,7-9 BOT CHORD 2x4 SP 11-13: WEBS 2x4 SP WEDGE Left: 2x4 SP No.3, Righ	P No.2 *Except* : 2x4 SP M 31 P M 31 *Except* 2x4 SP No.2 P No.3 ht: 2x4 SP No.3		BRACING- TOP CHORE BOT CHORE	0 Structura 0 Rigid cei	al wood sheathing dire ling directly applied or	ectly applied or 3-5-8 of 5-9-12 oc bracing.	c purlins.
REACTIONS. (size Max H Max U Max G	e) 2=0-8-0, 8=0-8-0 orz 2=125(LC 16) plift 2=-581(LC 8), 8=-603(LC 9) rav 2=1252(LC 1), 8=1307(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2:3=- 7:8=- BOT CHORD 2:14= WEBS 3:14= 6:10=	Comp./Max. Ten All forces 250 (lb) or l 2846/1499, 3-4=-2707/1452, 4-5=-1817/ 2577/1354 =-1294/2679, 12-14=-1042/2200, 10-12=- =-275/244, 4-14=-223/524, 4-12=-651/434 =-105/368	ess except when shown. 1025, 5-6=-1819/1026, 6- ⁻ 1006/2119, 8-10=-1164/2 3, 5-12=-432/865, 6-12=-5	7=-2454/1324, 387 562/383,			annun in	
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V GCpi=0.18; MWFRS MWFRS for reaction 3) This truss has been 4) * This truss has been will fit between the b 5) Provide mechanical 2=581, 8=603.	e loads have been considered for this des (ult=130mph (3-second gust) Vasd=101m (envelope) gable end zone and C-C Ext is shown; Lumber DOL=1.60 plate grip D designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members. connection (by others) of truss to bearing	ign. ph; TCDL=4.2psf; BCDL= erior(2) zone; cantilever ri OL=1.60 load nonconcurrent with te bottom chord in all area plate capable of withstar	=3.0psf; h=18ft; Ca ight exposed ;C-C any other live load as where a rectang nding 100 lb uplift a	at. II; Exp C; En for members an is. ile 3-6-0 tall by : at joint(s) excep	cl., nd forces & 2-0-0 wide ot (jt=lb)	PBO DAL	

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			31-8-0	1
I			31-8-0	Ι
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-3-12,Edge], [18:0-3-8	8,Edge], [18:0-3-12,Edge],	[26:0-3-0,0-3-0]	
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.28 BC 0.09 WB 0.05 Matrix S	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 19 n/r 120 Vert(CT) -0.02 19 n/r 120 Horz(CT) -0.02 19 n/r 120	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2017/1FI2014	Iviatitx-5		Weight. 159 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2 P No.2		BRACING- TOP CHORD Structural wood sheathing dired BOT CHORD Rigid ceiling directly applied or	ctly applied or 6-0-0 oc purlins. 6-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. All bearings 31-0-0.

Max Horz 2=118(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 27, 28, 29, 30, 31, 32, 25, 24, 23, 22, 21, 20 except 2=-188(LC 8), 18=-200(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 26, 27, 28, 29, 30, 31, 32, 25, 24, 23, 22, 21, 20 except 2=264(LC 1), 18=264(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27, 28, 29, 30, 31,
- 32, 25, 24, 23, 22, 21, 20 except (jt=lb) 2=188, 18=200.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:55.3

F	7-9-5 7-9-5	<u>15-10-0</u> 8-0-11	23-10-11 8-0-11	31-8-0 7-9-5
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 * Rep Stress Incr YES Code FBC2017/TPI2014	CSI. DE TC 0.59 Ve BC 0.89 Ve WB 0.50 Ho Matrix-MS Ho Ho	FL. in (loc) l/defl L/d rt(LL) -0.22 13 >999 240 rt(CT) -0.45 13-15 >850 180 rz(CT) 0.12 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 146 lb FT = 20%
LUMBER-		BR	ACING-	

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS

- REACTIONS. 2=0-8-0, 10=0-8-0 (size) Max Horz 2=139(LC 16) Max Uplift 2=-591(LC 8), 10=-473(LC 9) Max Grav 2=1283(LC 1), 10=1168(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-2972/1577, 3-5=-2802/1519, 5-6=-1911/1087, 6-7=-1911/1087, 7-9=-2834/1545, 9-10-2999/1606
- BOT CHORD 2-15=-1425/2779, 13-15=-1139/2289, 11-13=-1147/2300, 10-11=-1456/2817 WFBS 6-13=-465/916, 7-13=-662/447, 7-11=-247/552, 9-11=-300/269, 5-13=-650/437, 5-15=-224/522, 3-15=-283/255

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl.,
- GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=591, 10=473.

Structural wood sheathing directly applied or 2-8-1 oc purlins.

Rigid ceiling directly applied or 4-8-13 oc bracing

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITH KRETEKENCE PAGE MIT-7475 fev. or 19/2/2/0/ DEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP/1 Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 2=496(LC 1), 5=366(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-559/246

BOT CHORD 2-6=-367/500, 5-6=-367/500

WEBS 3-5=-574/420

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=272. 5=195.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER REFERENCE PAGE MIL-7475 fev. or 19/2/2/0/ BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP/I Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10-4-0
10-4-0

Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-3-12,Edge]						
LOADING(psf)TCLL20.0TCDL7.0BCLL0.0*BCDL	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.28 BC 0.10 WB 0.05 Matrix-S	DEFL. ir Vert(LL) 0.01 Vert(CT) 0.00 Horz(CT) -0.00	(loc) l/ 1 1 8	/defl L/d n/r 120 n/r 120 n/a n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	P No.2 P No.2 P No.3 P No.3		BRACING- TOP CHORD BOT CHORD	Structural v except end Rigid ceilin 10-0-0 oc b	wood sheathing dired d verticals. ng directly applied or bracing: 9-10.	ctly applied or 6-0-0 o 6-0-0 oc bracing, Ex	c purlins, ccept:

REACTIONS. All bearings 10-4-0.

Max Horz 2=195(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 10, 13, 12, 11 except 2=-177(LC 8) Max Grav All reactions 250 lb or less at joint(s) 8, 10, 9, 13, 12, 11 except 2=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl.,
- GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10, 13, 12, 11 except (jt=lb) 2=177.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for statistity and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Provide adequate drainage to prevent water ponding.

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6, 8 except (jt=lb) 7=142, 9=142.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			14-0-0				
			14-0-0				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.13	Vert(LL) r	ı/a − n/a	999	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.11	Vert(CT) r	ı/a - n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.0	00 6 n/a	n/a		
BCDL 10.0	Code FBC2017/TPI2014	Matrix-S				Weight: 62 lb	FT = 20%
LUMBER-			BRACING-		1		
TOP CHORD 2x4 SF	P No.2		TOP CHORD	Structural wood s	heathing dire	ctly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SF	P No.2			except end vertica	als.		
WEBS 2x4 SF	P No.3		BOT CHORD	Rigid ceiling direc	tly applied or	10-0-0 oc bracing.	
OTHERS 2x4 SF	P No.3						

REACTIONS. All bearings 14-0-0.

(lb) -

Max Uplift All uplift 100 lb or less at joint(s) 10, 6, 8 except 7=-137(LC 8), 9=-137(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 10, 6, 8 except 7=295(LC 1), 9=295(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6, 8 except (jt=lb) 7=137, 9=137.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 1,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

